Cho tam giác ABC có phân giác AD, đường cao CH. Trung tuyến BM đồng qui tại O. Chứng minh: AB.cosA = BC.cosB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này có 2 cách giải nhé
vẽ EM vuông HC
\(\Delta\)AHC có ME // AH ( \(\perp\) HC ) và AM = MC
==> ME là đg trung bình ==> ME = 1/2 AH
lại có BE // BH
==>\(\dfrac{BH}{MC}=\dfrac{OH}{OC}\) (1)
Mặt khắc : AD là pg của BAC hay AO là pg cỏa BAC
==> \(\dfrac{OH}{OC}=\dfrac{AH}{AC}\) (2)
Từ (1) và (2) ==>\(\dfrac{BH}{MC}=\dfrac{AH}{AC}\)
Ta có AB. cos A = AB .\(\dfrac{AH}{AC}\)
BC. cos B=\(\dfrac{BH}{BC}\) . BC
rút BH , AH ra sau thay vào bạn tự lm tiếp nhá
-Xét △ABC có: E thuộc AB, D thuộc BC, H thuộc AC và AD, BH, CE đồng quy tại I.
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}.\dfrac{EB}{EA}=1\) (định lí Ceva).
\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}=1\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{DB}{DC}\Rightarrow\)HD//AB.
\(\Rightarrow S_{ABD}=S_{ABH}\Rightarrow S_{ABD}-S_{ABI}=S_{ABH}-S_{ABI}\Rightarrow S_{IBD}=S_{AIH}\)
-Xét △ABC có: H∈AC, D∈BC, E∈AB ; AD, BH, CE đồng quy
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\) (định lí Ceva)
\(\Rightarrow\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\Rightarrow\dfrac{HA}{HC}=\dfrac{DB}{DC}\)
\(\Rightarrow\)HD//AB (định lí Ta-let đảo)
Làm giúp mình bài này với! Thanks trước nhé? | Yahoo Hỏi & Đáp