7x=3y=2z và 7x-3y+4z=42
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Lời giải:
Từ \(10x^2=10y^2+z^2\Rightarrow 10x^2-10y^2=z^2\)
Theo hằng đẳng thức đáng nhớ ta có:
\((7x-3y+2z)(7x-3y-2z)=(7x-3y)^2-(2z)^2\)
\(=(7x-3y)^2-4z^2=(49x^2-42xy+9y^2)-4(10x^2-10y^2)\)
\(=9x^2-42xy+49y^2=(3x)^2-2.(3x).(7y)+(7y)^2=(3x-7y)^2\)
Ta có đpcm.
\(VT=\left(7x-3y+2z\right)\left(7x-3y-2z\right)\)
\(=\left(7x-3y\right)^2-4z^2\)
\(=49x^2-42xy+9y^2-4z^2\)
\(=4\cdot10x^2+9x^2-42xy+9y^2-4z^2\)
mà 10x2 = 10y2 + z2
\(\Rightarrow VT=4\left(10y^2+z^2\right)+9x^2-42xy+9y^2-4z^2\)
\(=40y^2+4x^2+9x^2-42xy+9y^2-4z^2\)
\(=9x^2-42xy+49y^2\)
\(=\left(3x-7y\right)^2=VP\)
Ta có :
10x2=10y2+z2
=>40x2=40y2+4z2
=>49x2-9x2-49y2+9y2-4z2=0
=>49x2+9y2-4z2=9x2+49y2
=>49x2-2.7x.3y+9y2-4z2=9x2-2.3x.7y+49y2
=>(7x-3y)2-4z2=(3x-7y)2
=>(7x-3y+2z)(7x-3y-2z)=(3x-7y)2
kbnha
Ta có: 7x=3y=2z
nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{2}}\)
hay \(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}\)
mà 7x-3y+4z=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}=\dfrac{7x-3y+4z}{1-1+2}=\dfrac{42}{2}=21\)
Do đó:x=3; y=7; z=10,5