K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 7x=3y=2z

nên \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{2}}\)

hay \(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}\)

mà 7x-3y+4z=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{7x}{1}=\dfrac{3y}{1}=\dfrac{4z}{2}=\dfrac{7x-3y+4z}{1-1+2}=\dfrac{42}{2}=21\)

Do đó:x=3; y=7; z=10,5

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

1: x=3y=2z

=>x/6=y/2=z/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)

=>x=48/3=16; y=16/3; z=8

2: 2x=3y=4z

=>x/6=y/4=z/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)

=>x=24; y=16; z=12

\(x=3y=2z\)

\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)

Rồi thế vào là ra thôi :

 \(\frac{2x}{2}=6\Rightarrow x=..........\)

Rồi tương tự thôi

9 tháng 8 2016

6)

\(x=3y=2z\)

\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)

\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)

9 tháng 8 2016

7)

\(2x=3y=-2z\)

\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)

6 tháng 10 2020

7x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2

Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.

Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6

⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47

x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87

y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27

Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27

 7x−3y+12

2y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=27x−3y+122y=y+2zz−3y+2=x−y=7x−7y=12−3y9y=4−y3y=2z+4z+2=2

Phân thức thứ 5 trong dãy xuất hiện bằng cách thực hiện phép trừ tử - mẫu tương ứng của phân thức thứ 1 cho phân thức thứ 4.

Phân thức thứ 7 là kết quả của phép cộng tương ứng tử mẫu phân thức thứ 2 và thứ 6

⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47⇒4−y3y=2⇒4−y=6y⇒7y=4⇒y=47

x−y=2⇒x=−2y⇒x=−2.47=−87x−y=2⇒x=−2y⇒x=−2.47=−87

y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒y+2zz−3y+2=2z+47z−127+2=2z+47z+27=2⇒ luôn đúng ∀z≠−27∀z≠−27

Vậy ta có x=−87;y=47;z≠−27x=−87;y=47;z≠−27