K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

19 tháng 8 2023

1) Mình làm rồi nhé:

https://hoc24.vn/cau-hoi/cho-dabc-can-tai-a-co-bc-5cm-b-c-40-tinh-ab-va-duong-cao-ah.8311486416239

2) Xét tam giác vuông ABH ta có: 

\(cosB=\dfrac{AH}{AB}\)

\(\Rightarrow cos60^o=\dfrac{5}{AB}\Rightarrow AB=\dfrac{5}{cos60^o}=10\)

Áp dụng định lý Py-ta-go vào tam giác này ta có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)

Mà: \(BH+CH=BC\)

\(\Rightarrow CH=BC-BH=10-5\sqrt{3}\approx1,3\)

Áp dụng định lý Py-ta-go ta có:

\(AC=\sqrt{CH^2+AH^2}=\sqrt{1,3^2+5^2}\approx5,2\)

25 tháng 8 2021

a) \(BC=BH+CH=1+4=5\left(cm\right)\)

    Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:

    \(\left\{{}\begin{matrix}AB^2=BH.BC=5\\AC^2=CH.BC=20\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

\(AH^2=BH.HC=4\Rightarrow AH=2\left(cm\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:

    \(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)

Ta có: \(BC=BH+HC=1+4=5\left(cm\right)\)

Áp dụng  hệ thức lượng trong tam giác vuông ABC có đường cao AH:

     \(\left\{{}\begin{matrix}AB^2=BH.BC=5\\AC^2=CH.BC=20\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

a:Ta có: BC=BH+HC

nên BC=1+4

hay BC=5cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=HC\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\\AH=2cm\end{matrix}\right.\)

3 tháng 8 2021

Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)

Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)

Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:

\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)

 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AC^2=HC\cdot BC\)

nên \(AC^2=20\)

hay \(AC=2\sqrt{5}\left(cm\right)\)

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(gt)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)

Xét ΔDBH vuông tại D và ΔECH vuông tại E có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

⇒HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Bài 3: 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Ta có: BH=CH(cmt)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3(cm)

c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

27 tháng 6 2021

vẽ hình giúp mk nha

16 tháng 2 2021

Cho mk xin hình luôn nhé 

16 tháng 2 2021

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2+5^2=13^2\)

\(\Rightarrow AC=12\left(cm\right)\)

- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)

=> Hai tam giác trên đồng dạng .

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)

=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)

- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)

Vậy ...

a: góc C=180-110-40=30 độ

Xét ΔABC có AB/sinC=BC/sinA=AC/sinB

=>AB/sinC=BC/sinA

=>AB/sin30=12/sin110

=>\(AB\simeq6,39\left(cm\right)\)

b: BC/sinA=AC/sinB

=>AC/sin40=12/sin110

=>\(AC\simeq8,21\left(cm\right)\)