K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)

Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)

Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:

\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)

 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AC^2=HC\cdot BC\)

nên \(AC^2=20\)

hay \(AC=2\sqrt{5}\left(cm\right)\)

17 tháng 7 2018

A B C H

Xét  \(\Delta ABH\)và   \(\Delta CAH\)

     \(\widehat{AHB}=\widehat{CHA}=90^0\)

    \(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)

suy ra:  \(\Delta ABH~\Delta CAH\) (g.g)

suy ra:   \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)

hay   \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)

suy ra:  \(CH=\frac{6.30}{5}=36\)

             \(BH=\frac{5.30}{6}=25\)

13 tháng 7 2015

Tam giác ABC vuông tại A , theo HTL : 

                       AH^2 = HB .HC  

            => 4^2    = 2 . HC = > HC = 16 : 2 = 8 cm 

BC = HB + HC = 2 + 8 = 10 

                       AB^2 = BH . BC = 2.10 = 20 

                => AB = căn 20 

                       AC^2 = HC . BC = 8 x 10 =80 

               => AC = căn 80 

 TAm giác ABC vuông tại A 

=>  SIn B = AC/BC = căn 80 /10 => B = sin-1 ( căn 80 / 10) = 63 độ 26' 

=> C = 90 - B = 90 - 63 độ 26 phút 

18 tháng 1 2019

                       Giải

Tam giác ABC vuông tại A , theo HTL : 

           \(AH^2=HB.HC\)

\(\Rightarrow4^2=2HC\Leftrightarrow HC=16\div2=8\left(cm\right)\)                                 

\(\Rightarrow BC=HB+HC=2+8=10\)

\(AB^2=BH.BC=2.10=20\)

   \(\Rightarrow AB=\sqrt{20}\)

\(AC^2=HC.BC=8.10=80\)     

       \(\Rightarrow AC=\sqrt{80}\)

 Tam giác ABC vuông tại A 

\(\Rightarrow\) SIn B = \(\frac{AC}{BC}\) = \(\sqrt{\frac{8}{10}}\)\(\Rightarrow\) \(B=sin^{-1}\) \(\sqrt{\frac{80}{10}}=63^026'\) 

\(\Rightarrow C=90-B=90-63^026'\)

20 tháng 5 2021

Ai giúp tui với

20 tháng 5 2021

Theo đề ra: HB = 1cm

                    HC = 2cm

Ta có: BC = HB + HC

          BC = 1cm + 2cm

          BC = 3cm

Theo đề ra: ΔABC vuông tại A, đường cao AH

\(\rightarrow AB^2=BH.BC=1.3=3\)

\(\rightarrow AB=\sqrt{3}\)

\(\rightarrow AC^2=CH.BC=2.3=6\)

\(\rightarrow AC=\sqrt{6}\)

12 tháng 12 2014

a/ Theo t/c đường phân giác ta có : \(\frac{DA}{DC}=\frac{AB}{BC}=\frac{2}{3}\)

Trong tam giác vuông ABC có : sin C = \(\frac{AB}{BC}=\frac{2}{3}\)Từ đó tính đc góc C, góc B

Biết góc B, góc C tính được AB, BC

b/ Dùng các hệ thức tam giác vuông tính đc AH, BH, CH

30 tháng 7 2020

a. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AC2 = HC . BC => HC = \(\frac{AC^2}{BC}\)= \(\frac{6^2}{12}\)= 3cm

=> BH = BC - HC = 12 - 3 = 9cm

b. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AH2 = BH . HC = 2 . 5 = 10 => AH = \(\sqrt{10}\)cm

Xét ΔABH và ΔACH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+\sqrt{10}^2}=\sqrt{14}cm\)

\(AC=\sqrt{HC^2+AH^2}=\sqrt{5^2+\sqrt{10^2}}=\sqrt{35}cm\)

c. Xét ΔAHC \(\left(\widehat{AHC}=90^o\right)\)theo định lí py - ta - go ta có:

\(AC=\sqrt{HC^2+AH^2}=\sqrt{3^2+4^2}=5cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

\(AH^2=HC.BH=>BH=\frac{AH^2}{HC}=\frac{4^2}{3}=\frac{16}{3}cm\)

\(AB=\sqrt{BH^2+AH^2}=\sqrt{\left(\frac{16}{3}\right)^2+4^2}=\frac{20}{3}cm\)

d. Ta có: \(\frac{AB}{AC}=\frac{3}{4}=>4AB=3AC< =>4.6=3AC< =>24=3AC< =>AC=8cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo định lí py - ta - go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}=>AH^2=\frac{576}{25}=23.04=>AH=\sqrt{23.04}=4,8cm\)

Xét ΔABH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4.8^2}=3,6cm\)

=> HC = BC - BH = 10 - 3,6 = 6,4cm

17 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=1\cdot4=4\)

=>\(AH=\sqrt{4}=2\left(cm\right)\)

BC=BH+CH

=>BC=1+4=5(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

nên \(\widehat{C}\simeq27^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-27^0=63^0\)

b: AH=2cm

=>H thuộc (A;2cm)

Xét (A;2cm) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;2cm)

c: Sửa đề: BDEH

Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

=>HB=DE

Xét tứ giác BDEH có

BH//ED

BH=ED

Do đó: BDEH là hình bình hành

3:

Đặt HB=x; HC=y

Theo đề, ta có: x+y=289 và xy=120^2=14400

=>x,y là các nghiệm của phương trình:

a^2-289a+14400=0

=>a=225 hoặc a=64

=>(x,y)=(225;64) và (x,y)=(64;225)

TH1: BH=225cm; CH=64cm

=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)

TH2: BH=64cm; CH=225cm

=>AB=119m; AC=255cm