Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Mình làm rồi nhé:
https://hoc24.vn/cau-hoi/cho-dabc-can-tai-a-co-bc-5cm-b-c-40-tinh-ab-va-duong-cao-ah.8311486416239
2) Xét tam giác vuông ABH ta có:
\(cosB=\dfrac{AH}{AB}\)
\(\Rightarrow cos60^o=\dfrac{5}{AB}\Rightarrow AB=\dfrac{5}{cos60^o}=10\)
Áp dụng định lý Py-ta-go vào tam giác này ta có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)
Mà: \(BH+CH=BC\)
\(\Rightarrow CH=BC-BH=10-5\sqrt{3}\approx1,3\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{CH^2+AH^2}=\sqrt{1,3^2+5^2}\approx5,2\)
a) \(BC=BH+CH=1+4=5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=BH.BC=5\\AC^2=CH.BC=20\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AH^2=BH.HC=4\Rightarrow AH=2\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Ta có: \(BC=BH+HC=1+4=5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=BH.BC=5\\AC^2=CH.BC=20\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=\sqrt{20}=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
a:Ta có: BC=BH+HC
nên BC=1+4
hay BC=5cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=HC\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\\AH=2cm\end{matrix}\right.\)
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=HC\cdot BC\)
nên \(AC^2=20\)
hay \(AC=2\sqrt{5}\left(cm\right)\)
a: góc C=180-110-40=30 độ
Xét ΔABC có AB/sinC=BC/sinA=AC/sinB
=>AB/sinC=BC/sinA
=>AB/sin30=12/sin110
=>\(AB\simeq6,39\left(cm\right)\)
b: BC/sinA=AC/sinB
=>AC/sin40=12/sin110
=>\(AC\simeq8,21\left(cm\right)\)
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)
\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow5-BC^2=-2\)
\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)
b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)
\(\Leftrightarrow125-BC^2=50\)
hay \(BC=5\sqrt{3}\left(cm\right)\)
c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)
\(\Leftrightarrow7-BC^2=4\sqrt{3}\)
hay \(BC=2-\sqrt{3}\left(cm\right)\)
a: Bạn ghi lại đề nha bạn
b: ΔBAC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{18^2-6.5^2}=\dfrac{7}{2}\sqrt{23}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\dfrac{281.75}{18}=\dfrac{1127}{72}\left(cm\right)\)
Xét ΔABC có HI//AC
nên \(\dfrac{HI}{AC}=\dfrac{BH}{BC}\)
=>\(\dfrac{HI}{6.5}=\dfrac{1127}{72}:18=\dfrac{1127}{1296}\)
=>\(HI\simeq5,65\left(cm\right)\)
ΔHAB vuông tại H có HI là đường cao
nên \(BI\cdot BA=BH^2\)
=>\(BI=\left(\dfrac{1127}{72}\right)^2:\dfrac{7}{2}\sqrt{23}=14,6\left(cm\right)\)
\(AI=AB-BI=3.5\sqrt{23}-14.6\simeq2,19\left(cm\right)\)
\(S_{AIHC}=\dfrac{1}{2}\left(HI+AC\right)\cdot AI\)
\(=\dfrac{1}{2}\cdot2.19\cdot\left(6.5+5.65\right)\simeq13,3\left(cm^2\right)\)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)