Cho 2 số nguyên dương x;y thỏa \(x^2+y^2-x⋮xy\).
CM : x là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, y là số nguyên âm nếu x,y là số nguyên dương
b,y là số nguyên dương nếu x,y là số nguyên âm
bạn k cho mk nha
Để x là số nguyên thì 3a - 2 ϵ Ư(2) = {1; -1; 2; -2}.
Lập bảng
3a - 2 | 1 | -1 | 2 | -2 |
a | 1 | \(\dfrac{1}{3}\) (loại) | \(\dfrac{4}{3}\) (loại) | 0 |
a) Để x là số nguyên dương thì 3a - 2 phải là số nguyên dương. Vậy để x là số nguyên dương thì a = 1.
b) Để x là số nguyên âm thì 3a - 2 phải là số nguyên âm. Vậy để x là số nguyên âm thì a = 0.
Lời giải:
Ta có:
\(x^2+y^2-x\vdots xy\Rightarrow x^2+y^2-x\vdots x\Rightarrow y^2\vdots x\)
Đặt \(y^2=xk\) với \(k\in\mathbb{Z}^+\). Thay vào điều kiện ban đầu:
\(x^2+(xk)^2-x\vdots xy\Rightarrow x+xk^2-1\vdots y\)
Gọi \(d=\text{UCLN}(x,k)\). Vì \(y^2=xk\Rightarrow y^2\vdots d^2\Rightarrow y\vdots d\)
Suy ra \(x+xk^2-1\vdots y\vdots d\). Mà \(x\vdots d\Rightarrow 1\vdots d\Rightarrow d=1\)
Có nghĩa là \(x,k\) nguyên tố cùng nhau. Mà \(xk=y^2\) là 1 số chính phương, do đó bản thân \(x\) cũng là số chính phương.
Ta có đpcm.