Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Vì x,y là số dương \(\Rightarrow\left\{{}\begin{matrix}y+0,5-y< y+0,5\\x+0,5-x< x+0,5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2y}{y+0,5-y}>\dfrac{x^2y}{y+0,5}\\\dfrac{xy^2}{x+0,5-x}>\dfrac{xy^2}{x+0,5}\end{matrix}\right.\)\(\Rightarrow\dfrac{x^2y}{y+0,5}+\dfrac{xy^2}{x+0,5}< \dfrac{x^2y}{y+0,5-y}+\dfrac{xy^2}{x+0,5-x}=\dfrac{x^2y}{0,5}+\dfrac{xy^2}{0,5}=2x^2y+2xy^2=2xy\left(x+y\right)=2xy\cdot1=2xy\left(1\right)\)Đặt x=0,5+m; y=0,5+m thì x+y=0,5+m+0,5-m=1(thỏa mãn đề bài)
\(\Rightarrow xy=\left(0,5+m\right)\cdot\left(0,5-m\right)=0,5\cdot0,5+0,5m-0,5m-m\cdot m=0,25-m^2\)Vì:\(m^2\ge0\Rightarrow0,25-m^2\le0,25\Rightarrow xy\le0,25\Rightarrow2xy\le0,25\cdot2=0,5\left(2\right)\)Từ (1) và (2) \(\Rightarrow\dfrac{x^2y}{y+0,5}+\dfrac{xy^2}{x+0,5}< 0,5=\dfrac{1}{2}\)
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
= (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
= x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
(Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ
Nếu là thi Vio thì chỉ điền đáp số
a) x =6.
b) x = 1; y = 4
Giải kiểu VIO ra đáp số khác với trình bày. 2 bài này đều nhẩm được.
a) Để PS đã cho >0 thì 5<x<7. x chỉ bằng 6 thay vào đúng. Ko cần tìm tiếp
b) Để mẫu chung bằng 4 thì y phải =4; => x = 1. Thỏa mãn.
Cách nhẩm tuy không chặt chẽ bằng bài giải chi tiết nhưng VIO thì rất hiệu quả. Mình trình bày cách nghĩ của mình mong các bạn góp ý.
Lời giải:
Ta có:
\(x^2+y^2-x\vdots xy\Rightarrow x^2+y^2-x\vdots x\Rightarrow y^2\vdots x\)
Đặt \(y^2=xk\) với \(k\in\mathbb{Z}^+\). Thay vào điều kiện ban đầu:
\(x^2+(xk)^2-x\vdots xy\Rightarrow x+xk^2-1\vdots y\)
Gọi \(d=\text{UCLN}(x,k)\). Vì \(y^2=xk\Rightarrow y^2\vdots d^2\Rightarrow y\vdots d\)
Suy ra \(x+xk^2-1\vdots y\vdots d\). Mà \(x\vdots d\Rightarrow 1\vdots d\Rightarrow d=1\)
Có nghĩa là \(x,k\) nguyên tố cùng nhau. Mà \(xk=y^2\) là 1 số chính phương, do đó bản thân \(x\) cũng là số chính phương.
Ta có đpcm.