so sánh (2022 + 2021)2020 và (1998 + 1997)1996
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)
-1996x1999=1996x(1998+1)=1996x1998+1996
-1997x1998=(1996+1)x1998=1996x1998+1998
Vì vậy 1996x1999<1997x1998
Có: \(\dfrac{2019}{2021}=1-\dfrac{2}{2021}\)
\(\dfrac{2020}{2022}=1-\dfrac{2}{2022}\)
Mà \(\dfrac{2}{2021}>\dfrac{2}{2022}\Rightarrow1-\dfrac{2}{2021}< 1-\dfrac{2}{2022}\Rightarrow\dfrac{2019}{2021}< \dfrac{2020}{2022}\)
\(\left(2022+2021\right)^{2020}>\left(1998+1997\right)^{2020}>\left(1998+1997\right)^{1996}\)
tick mik nha
(2022+2021)>(1998+1997)