Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1 + 2 + 22 + 23+......+22022
2A = 2 + 22+23+24+.....+22023
2A - A = 22023-1 = 22021.22-1 = 22021.4-1
- > A < 5.22021
sai hay đúng ko bt nha ( mik lm bừa )
Câu 1.
C = 5 + 42 + 43 + ... + 42020
a) Xét A = 42 + 43 + ... + 42020
=> 4A = 43 + 44 + ... + 42021
=> 4A - A = 3A
= 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )
= 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020
= 42021 - 42
=> A = \(\frac{4^{2021}-4^2}{3}\)
Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)
b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)
Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)
=> C < D/3
c) Dùng kết quả ý a) ta được :
3C + 1 = 42x-6
<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)
<=> 42021 - 1 + 1 = 42x-6
<=> 42021 = 42x-6
<=> 2021 = 2x - 6
<=> 2x = 2027
<=> x = 2027/2
Câu 2.
( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221
Xét A = 22 + 23 + ... + 220
=> 2A = 23 + 24 + ... + 221
=> A = 2A - A
= 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )
= 23 + 24 + ... + 221 - 22 - 23 - ... - 220
= 221 - 4
Thế vô đề bài ta được
( x - 1 )( 4 + 221 - 4 ) = 222 - 221
<=> ( x - 1 ).221 = 221( 2 - 1 )
<=> x - 1 = 1
<=> x = 2
A=2020^10+2/2020^11+2
⇒ 2020A=2020^11+2.2020/2020^11+2
= 1+2.2020−2/2020^11+2
B=2020^11+2/2020^12+2
⇒ 2020B=2020^12+2.2020/2020^12+2
= 1+2.2020−2/2020^12+2
Vì 2020^12+2>2020^11+2
⇒ 2.2020−2/2020^11+2<2.2020−2/2020^12+2
⇒ 2020A<2020B
⇒ A<B
a) Không tính cụ thể các giá trị của A và B, hãy so sánh A và B.
A = 20213 và B = 2020 . 2021 . 2022
B = 2020.2021.2022
B = (2021 + 1).(2021 - 1).2021
B = (20212 - 2021 + 2021 - 1).2021
B = (20212 - 1).2021
B = 20213 - 2021 < 20213
Vậy A > B
Ta cóA=1+2+22+...+22019
2A=2+22+23+...+22020
=>2A-A=(2+22+23+...+22020)-(1+2+22+...+22019)
=>A=22020-1
Mà B=22020-1
=>A=B
Vậy A=B
Ta có: \(A=1+2+2^2+2^3+...+2^{2019}\)
\(2A=2+2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=2^{2020}-1\)
Hay \(A=2^{2020}-1\)
Vì \(B=2^{2020}-1\);\(A=2^{2020}-1\)
\(\Rightarrow A=B\)
Hok tốt nha^^
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
\(\left(2022+2021\right)^{2020}>\left(1998+1997\right)^{2020}>\left(1998+1997\right)^{1996}\)
tick mik nha
(2022+2021)>(1998+1997)