K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3

=> p = 3k+1 ; 3k+ 2 ( k \(\in\) N )

Nếu p=3k+1

=> 2p+1 = 2(3k+1)+1=6k+3 \(⋮\) 3 --> vô lí

=> p=3k+2

=> p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+14+31=9k^2+27k+45 \(⋮\) 3

=> p(p+5)+31 là hợp số (đpcm )

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

6 tháng 10 2019

Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1

                                     hoặc 3k+2       ( k\(\in\)N*)

+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)

                                     Do  k\(\in\)N*\(\Rightarrow4k+3>0\)

\(\Rightarrow3\left(4k+3\right)\)là hợp số 

\(\Rightarrow3k+2\)( loại)

+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố) 

\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)

                    Do  k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)

\(\Rightarrow3\left(2k+1\right)\)là hợp sốVậy Nếu 4p+1 là SNT thì 2p+1 là hợp số 
6 tháng 10 2019

Bổ sung chỗ 

\(\Rightarrow p=3k+2\)( loại ) nhé em

24 tháng 9 2021

\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)

+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số

+) Nếu p chia cho \(6\)\(1\) thì \(p=6k+1\)

+) Nếu p chia cho \(6\)\(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.

+) Nếu p chia cho \(6\)\(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(5\) thì \(p=6k+5\)

Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :

\(p=6k+1\) hoặc \(p=6k+5\)

b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.

Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.

20 tháng 2 2020

Vì p là số nguyên tố, Ta xét: 

+) p=2 => 2p3+5=2.23+5=21 (loại vì 21 chia hết cho 7)

+) p=3 => p3-6=33-6=21 (loại vì 21 chia hết cho 7)

+) p=5 => p3-6=53-6=119 (loại vì 119 chia hết cho 7)

+) p=7 => p3-6=73-6=337 và 2p3+5=2.73+5=691. Vì 337 và 691 đều là số nguyên tố nên p=7 thỏa mãn đề bài. 

+) p>7. Xét p=7k+1, ..., 7k+6 (đều chia 7 dư 13,...,63)

22 tháng 3 2020

Bài bạn ấy làm đúng rồi

Làm tiếp 

________________________________

Với p = 7k +  1 ta có: \(2p^3+5=2\left(7k+1\right)^3+5\equiv2.1+5\equiv0\left(mod7\right)\)=>\(2p^3+5⋮7\)loại

Với p = 7k+2 ta có:  \(2p^3+5=2\left(7k+2\right)^3+5\equiv2.2^3+5\equiv0\left(mod7\right)\)=> \(2p^3+5⋮7\)loại

Với p = 7k + 3 ta có: \(p^3-6=\left(7k+3\right)^3-6\equiv3^3-6\equiv0\left(mod7\right)\)=> loại

Với p = 7k + 4 ta có: \(2p^3+5=2\left(7k+4\right)^3+5\equiv2.4^3+5\equiv0\left(mod7\right)\)=> loại

Với p = 7k + 5 ta có: \(p^3-6=\left(7k+5\right)^3-6\equiv5^3-6\equiv0\left(mod7\right)\)=> loại

Với p = 7k + 6 ta có: \(p^3-6=\left(7k+6\right)^3-6\equiv6^3-6\equiv0\left(mod7\right)\)=> loại 

Vậy chỉ có p = 7 thỏa mãn 

khi đó: p^2+ 10 = 59 là số nguyên tố.( đpcm)