K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)\(100\) số hạng

\(100⋮2;4;5\)\(100⋮̸3\)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)

vậy \(A\) chia hết cho \(3\) (1)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)

vậy \(A\) chia hết cho \(15\) (2)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)

vậy \(A\) chia hết cho \(31\) (3)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)

ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)

vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)

nên số 2 là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)

21 tháng 9 2017

vt ra mấy dòng này....chắc muộn hc quá

18 tháng 11 2018


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

18 tháng 11 2018

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

\(A=\dfrac{\left(100+1\right)\cdot100}{2}=101\cdot50⋮2\)

18 tháng 2 2022

A=(1+100).100:2

A= 5050

Vì 5050:2=2525

=> A chia hết cho 2

1 tháng 11 2021

\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)

1 tháng 11 2021

Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với

27 tháng 8 2017

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)

ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)

\(\Rightarrow A\) chia hết cho \(3\) (1)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)

\(\Rightarrow A\) chia hết cho \(15\) (2)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))

\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)

\(\Rightarrow A\) chia hết cho \(31\) (3)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))

\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(A=6+2^3.7+...+2^{98}.7\)

\(A=6+7\left(2^3+...+2^{98}\right)\)

ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)

\(\Rightarrow A\) không chia hết cho \(7\)\(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\)\(6\) (đpcm)

12 tháng 12 2017

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

12 tháng 12 2017

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

27 tháng 11 2017

giúp mk ik

28 tháng 1 2016

giải bằng phép đồng dư giúp mk

18 tháng 10 2015

(1+23)+(2+24)+...+(28+211)

9+2(1+23)+...+28(1+23)

9(1+2+...+28) chia hết cho 9

=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9

 

18 tháng 10 2015

c)(5+52)+(53+54)+...+(599+5100)

5(1+5)+53(1+5)+...+599(1+5)

6(5+53+...+599) chia hết cho 3