cho A=2^1+2^2+2^3+...+2^99+2^100. Chứng minh rằng A chia hết cho 3 ;15;31 nhưng không chia hết cho 7 và tìm số dư của A khi chia cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
\(A=\dfrac{\left(100+1\right)\cdot100}{2}=101\cdot50⋮2\)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) (có 100 con số trong phép cộng)
ta có : \(100\) chia hết cho \(2;4;5\) và không chia hết cho \(3\) ; \(100\) chia \(3\) dư 2 (*)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{99}.3=3\left(2+2^3+...+2^{99}\right)⋮3\)
\(\Rightarrow A\) chia hết cho \(3\) (1)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(A=2\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(A=2.15+...+2^{97}.15=15\left(2+...+2^{97}\right)⋮15\)
\(\Rightarrow A\) chia hết cho \(15\) (2)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=\left(2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{99}\right)\)(vì(*))
\(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(A=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(A=2.31+...+2^{96}.31=31\left(2+...+2^{96}\right)⋮31\)
\(\Rightarrow A\) chia hết cho \(31\) (3)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(A=2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì (*))
\(A=2+2^2+2^3\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+4+2^3\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(A=6+2^3.7+...+2^{98}.7\)
\(A=6+7\left(2^3+...+2^{98}\right)\)
ta có : \(7\left(2^3+...+2^{98}\right)⋮7\) nhưng \(6\) không trùng với \(7\)
\(\Rightarrow A\) không chia hết cho \(7\) và \(6< 7\) \(\Rightarrow\) \(6\) là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3)và(4) ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
chia hết cho \(3;15;31\) nhưng không chia hết cho \(7\) và số dư của \(A\) chia \(7\) là \(6\) (đpcm)
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
(1+23)+(2+24)+...+(28+211)
9+2(1+23)+...+28(1+23)
9(1+2+...+28) chia hết cho 9
=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9
c)(5+52)+(53+54)+...+(599+5100)
5(1+5)+53(1+5)+...+599(1+5)
6(5+53+...+599) chia hết cho 3
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\) có \(100\) số hạng
và \(100⋮2;4;5\) và \(100⋮̸3\)
ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)
vậy \(A\) chia hết cho \(3\) (1)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)
\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)
vậy \(A\) chia hết cho \(15\) (2)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)
vậy \(A\) chia hết cho \(31\) (3)
* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)
\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)
\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)
ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)
vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)
nên số 2 là số dư khi \(A\) chia cho \(7\) (4)
từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)
vt ra mấy dòng này....chắc muộn hc quá