m.n ai có đề thi chuyển cấp cho (t) với chuyển cấp nha (đề thi tuyển sinh 10 ấy nha)
3 môn : toán ; anh ; văn : cái nào cũng đc đặc bt môn toán nha m.n
cảm ơn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH BÀ RỊA – VŨNG TÀU THPT Chuyên Lê Qúy Đôn | KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 2016 – 2017 Môn: TOÁN (Chuyên) Thời gian làm bài: 150 phút Ngày thi: 31/5/2016 |
ĐỀ CHÍNH THỨC
Câu 1 (3,0 điểm).
a) Rút gọn biểu thức với
b) Giải phương trình
c) Giải hệ phương trình
Câu 2 (2,0 điểm).
a) Tìm tất cả các cặp số nguyên tố (p; q) thỏa mãn p2 - 5q2 = 4
b) Cho đa thức ƒ(x) = x2 + bx + c. Biết b, c là các hệ số dương và ƒ(x) có nghiệm. Chứng minh ƒ(2) ≥ 93√c.
Câu 3 (1,0 điểm).
Cho x, y, z là 3 số dương thỏa mãn x2 + y2 + z2 = 3xyz. Chứng minh:
Câu 4 (3,0 điểm).
Cho hai đường tròn (O) và (0') cắt nhau tại A và B (OO' > R > R'). Trên nửa mặt phẳng bờ là OO' có chứa điểm A, kẻ tiếp tuyến chung MN của hai đường tròn trên (với M thuộc (O) và N thuộc (O')). Biết BM cắt (O') tại điểm E nằm trong đường tròn (O) và đường thẳng AB cắt MN tại I.
a) Chứng minh ∠MAN + ∠MBN = 180o và I là trung điểm của MN
b) Qua B, kẻ đường thẳng (d) song song với MN, (d) cắt (O) tại C và cắt (O') tại D (với C, D khác B). Gọi P, Q lần lượt là trung điểm của CD và EM. Chứng minh tam giác AME đồng dạng với tam giác ACD và các điểm A, B, P, Q cùng thuộc một đường tròn.
c) Chứng minh tam giác BIP cân.
Câu 5 (1,0 điểm).
Cho tam giác ABC có ba góc nhọn và H là trực tâm.
Chứng minh .
Đề thi chọn hs giỏi cấp huyện lớp 9 môn Sinh
https://dethihsg.com/tag/de-thi-hoc-sinh-gioi-mon-sinh-hoc-lop-9-co-dap-an/
Đề thi chọn đội dự tuyển tỉnh lớp 9 môn Sinh
https://dethi.violet.vn/present/show/entry_id/12187506
Cái đầu tiên tha hồ bn lựa nhé
ai có đề thi học sinh giỏi cấp huyện môn toán lớp 7 ko gửi cho mình nha(có đáp án nhé)
mk sẽ tick cho
Bài 5
\(a - b = 2 <=> b = a - 2\)
Do đó: \(P = 3a^2 + (a-2)^2 + 8\)
\(= 3a^2 + a^2 - 4a + 4 + 8\)
\(= 4a^2 - 4a + 12\)
\(= (2a - 1)^2 + 11\)
Vì \((2a - 1)^2 \geq 0 \) với mọi a nên \(= (2a - 1)^2 + 11 \geq 11 \) hay \(P \geq 11\)
Dấu "=" xảy ra \(\begin{cases} a - b = 2 \\ 2a - 1 = 0 \\\end{cases} <=> \begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
Vậy giá trị nhỏ nhất của P là 11 tại \(\begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)
câu hình:
a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\angle EDB+\angle EHB=180\)
\(\Rightarrow EDHB\) nội tiếp
b) Xét \(\Delta AHE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle DABchung\\\angle AHE=\angle ADB=90\end{matrix}\right.\)
\(\Rightarrow\Delta AHE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AH}{AD}=\dfrac{AE}{AB}\Rightarrow AB.AH=AD.AE\)
mà \(AH.AB=AC^2\) (hệ thức lượng) \(\Rightarrow AC^2=AD.AE\)
c) Vì \(EF\parallel AB\) \(\Rightarrow\angle CFE=\angle CBA=\angle CDA=\angle CDE\)
\(\Rightarrow CDFE\) nội tiếp mà \(\angle CEF=90\) \((EF\parallel AB,AB\bot CH)\)
\(\Rightarrow\angle CDF=90\Rightarrow CD\bot DF\)
Vì \(\Delta CDF\) vuông tại D có K là trung điểm CF \(\Rightarrow KC=KD\)
\(\Rightarrow\Delta KCD\) cân tại K \(\Rightarrow\angle DKB=2\angle DCB=2\angle DAB=\angle DOB\)
\(\Rightarrow DKOB\) nội tiếp \(\Rightarrow K\in\left(OBD\right)\)
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh
Sao bh lại làm đề ôn thi vào 10
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))