K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))

28 tháng 2 2022

SORY NHÉ

MK KHÔNG CÓ

28 tháng 2 2022
SỞ GIÁO DỤC VÀ ĐÀO TẠO
TỈNH BÀ RỊA – VŨNG TÀU
THPT Chuyên Lê Qúy Đôn
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NĂM HỌC 2016 – 2017
Môn: TOÁN (Chuyên)
Thời gian làm bài: 150 phút
Ngày thi: 31/5/2016

ĐỀ CHÍNH THỨC

Câu 1 (3,0 điểm).

a) Rút gọn biểu thức với 

b) Giải phương trình 

c) Giải hệ phương trình 

Câu 2 (2,0 điểm).

a) Tìm tất cả các cặp số nguyên tố (p; q) thỏa mãn p2 - 5q2 = 4

b) Cho đa thức ƒ(x) = x2 + bx + c. Biết b, c là các hệ số dương và ƒ(x) có nghiệm. Chứng minh ƒ(2) ≥ 93√c.

Câu 3 (1,0 điểm).

Cho x, y, z là 3 số dương thỏa mãn x2 + y2 + z2 = 3xyz. Chứng minh: 

Câu 4 (3,0 điểm).

Cho hai đường tròn (O) và (0') cắt nhau tại A và B (OO' > R > R'). Trên nửa mặt phẳng bờ là OO' có chứa điểm A, kẻ tiếp tuyến chung MN của hai đường tròn trên (với M thuộc (O) và N thuộc (O')). Biết BM cắt (O') tại điểm E nằm trong đường tròn (O) và đường thẳng AB cắt MN tại I.

a) Chứng minh ∠MAN + ∠MBN = 180o và I là trung điểm của MN

b) Qua B, kẻ đường thẳng (d) song song với MN, (d) cắt (O) tại C và cắt (O') tại D (với C, D khác B). Gọi P, Q lần lượt là trung điểm của CD và EM. Chứng minh tam giác AME đồng dạng với tam giác ACD và các điểm A, B, P, Q cùng thuộc một đường tròn.

c) Chứng minh tam giác BIP cân.

Câu 5 (1,0 điểm).

Cho tam giác ABC có ba góc nhọn và H là trực tâm.

Chứng minh .

9 tháng 7 2018

Đề thi chọn hs giỏi cấp huyện lớp 9 môn Sinh

 https://dethihsg.com/tag/de-thi-hoc-sinh-gioi-mon-sinh-hoc-lop-9-co-dap-an/

Đề thi chọn đội dự tuyển tỉnh lớp 9 môn Sinh

https://dethi.violet.vn/present/show/entry_id/12187506

Cái đầu tiên tha hồ bn lựa nhé

24 tháng 2 2016

lên google

24 tháng 2 2016

nhớ là đề năm nay đó nha mọi người

28 tháng 3 2019

Copy cái chữ ko phải link:)

18 tháng 2 2022

bạn có đáp án đề học sinh giỏi huyện ngọc lặc môn toán 7 năm 2015-2016 k cho mik xin vs :)))

 

11 tháng 6 2021

Bài 5

\(a - b = 2 <=> b = a - 2\)

Do đó: \(P = 3a^2 + (a-2)^2 + 8\)

\(= 3a^2 + a^2 - 4a + 4 + 8\)

\(= 4a^2 - 4a + 12\)

\(= (2a - 1)^2 + 11\)

Vì \((2a - 1)^2 \geq 0 \) với mọi a nên \(= (2a - 1)^2 + 11 \geq 11 \) hay \(P \geq 11\)

Dấu "=" xảy ra \(\begin{cases} a - b = 2 \\ 2a - 1 = 0 \\\end{cases} <=> \begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)

Vậy giá trị nhỏ nhất của P là 11 tại \(\begin{cases} a = \dfrac{1}{2} \\ b = -\dfrac{3}{2} \\\end{cases}\)

11 tháng 6 2021

câu hình:

a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\angle EDB+\angle EHB=180\)

\(\Rightarrow EDHB\) nội tiếp

b) Xét \(\Delta AHE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle DABchung\\\angle AHE=\angle ADB=90\end{matrix}\right.\)

\(\Rightarrow\Delta AHE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AH}{AD}=\dfrac{AE}{AB}\Rightarrow AB.AH=AD.AE\)

mà \(AH.AB=AC^2\) (hệ thức lượng) \(\Rightarrow AC^2=AD.AE\)

c) Vì \(EF\parallel AB\) \(\Rightarrow\angle CFE=\angle CBA=\angle CDA=\angle CDE\)

\(\Rightarrow CDFE\) nội tiếp mà \(\angle CEF=90\) \((EF\parallel AB,AB\bot CH)\)

\(\Rightarrow\angle CDF=90\Rightarrow CD\bot DF\)

Vì \(\Delta CDF\) vuông tại D có K là trung điểm CF \(\Rightarrow KC=KD\)

\(\Rightarrow\Delta KCD\) cân tại K \(\Rightarrow\angle DKB=2\angle DCB=2\angle DAB=\angle DOB\)

\(\Rightarrow DKOB\) nội tiếp \(\Rightarrow K\in\left(OBD\right)\)undefined

 

 

23 tháng 5 2019

TRL:

bn ôn bài trog sách moves các dạng y chang nhau

HOK TỐT

tk nha

26 tháng 1 2016

google có các bài toán năm trước đấy bạn

tick nhé

26 tháng 1 2016

bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh