CMR: Nếu m chia hết cho 2 thì
(m3+20m) chia hêts cho 48
Giúp mình nha mọi người. Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))
Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)
Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)
Chúc bạn học tốt!
ta có
A=9(7x+4y) - 2(13x+18y)
A=63x+36y-26x-36y
A=x(63-26)-(36y-36y)
A=37x
=>A chia hết cho 37
mà 7x+4y chia hết cho 37=>9(7x+4y) chia hết cho 37
9(7x+4y) chia hết cho 37=>2(13x+18y)
mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37
vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Gọi a là đại diện số lẻ.Có m=2a vì m là số chẵn
=>m^3 +20m= (2a)^3+20*2a=8a^3+40a
Xét 8a^3+40a
1-8a^3+40a
=8a^3 -2a+42a
=(2a+1)(2a-1)2a+42a
(2a+1)(2a-1)2a chia hết cho 3(vì là tích 3 số nguyên liên tiếp)(1)
42a chia hết cho 3(2)
Từ (1)(2)=>(2a+1)(2a-1)2a+42a chia hết cho 3
=>8a^3+40a chia hết cho 3(3)
2-8a^3 + 40a
=8*(a^3+5)
=> 8a^3 + 40a chia hết cho 8(4)
Có a là số lẻ suy ra a^3 là số lẻ,suy ra a^3+5 là tổng 2 số lẻ nên là số chẵn
=>a^3+5 chia hết cho 2=>8a^3 + 40a chia hết cho 2(5)
Từ (3)(4)(5)=>8a^3+40a chia hết cho 48
=>m^3 +20m chia hết cho 48 với m là số chẵn
đúng nhé
#)Giải :
Ta có :
\(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left\{m\left[m^2-1\right]-m\left[n\left(n^2-1\right)\right]\right\}\)
\(=mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)\)
\(m\left(m-1\right)\left(m+1\right)⋮6\left(1\right)\)
\(n\left(n-1\right)\left(n+1\right)⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)⋮6\)
\(\Rightarrow mn\left(m^2-n^2\right)⋮6\)
Mà \(4mn\left(m^2-n^2\right)⋮4\)
\(\Rightarrow4mn\left(m^2-n^2\right)⋮24\left(đpcm\right)\)
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Bài 1 :
Gọi số bị chia là a
=> a = 48k + 41 ( k thuộc Z )
=> a = 16 . 3k + 41
mà 16 . 3k chia hết cho 16 => a chia 16 cũng dư 41
Ta có :
\(m⋮2\Leftrightarrow m=2k\left(k\in N\right)\)
\(\Leftrightarrow m^3+20m=\left(2k\right)^3+20.2k\)
\(=8k^3+40k\)
\(=8k\left(k^2+5\right)\)
Cần chứng minh \(k\left(k^2+5\right)⋮6\)là xong.
+ nếu \(k\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
+ nếu \(k\) lẻ\(\Leftrightarrow k^2\) lẻ \(\Leftrightarrow k^2+5\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
Vậy \(k\left(k^2+5\right)⋮2\)
+ nếu \(k⋮3\) \(\Leftrightarrow k\left(k^2+5\right)⋮3\)
+ nếu \(k=3k_1+1\)\(\Leftrightarrow k^2+5=\left(3k_1+1\right)^2+5=9k_1+6k+6⋮3\)
+ nếu \(k=3k_2+2\) \(\Leftrightarrow k^2+5=\left(3k_2+2\right)^2+5=9k^2_2+12k_2+9⋮3\)
Vậy \(k\left(k^2+5\right)⋮3\)
=>dpcm
cảm ơn nha bạn