K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Ta có :

\(m⋮2\Leftrightarrow m=2k\left(k\in N\right)\)

\(\Leftrightarrow m^3+20m=\left(2k\right)^3+20.2k\)

\(=8k^3+40k\)

\(=8k\left(k^2+5\right)\)

Cần chứng minh \(k\left(k^2+5\right)⋮6\)là xong.
+ nếu \(k\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
+ nếu \(k\) lẻ\(\Leftrightarrow k^2\) lẻ \(\Leftrightarrow k^2+5\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
Vậy \(k\left(k^2+5\right)⋮2\)
+ nếu \(k⋮3\) \(\Leftrightarrow k\left(k^2+5\right)⋮3\)
+ nếu \(k=3k_1+1\)\(\Leftrightarrow k^2+5=\left(3k_1+1\right)^2+5=9k_1+6k+6⋮3\)
+ nếu \(k=3k_2+2\) \(\Leftrightarrow k^2+5=\left(3k_2+2\right)^2+5=9k^2_2+12k_2+9⋮3\)
Vậy \(k\left(k^2+5\right)⋮3\)
=>dpcm

17 tháng 9 2017

cảm ơn nha bạn

14 tháng 5 2015

Gọi a là đại diện số lẻ.Có m=2a vì m là số chẵn
=>m^3 +20m= (2a)^3+20*2a=8a^3+40a

Xét 8a^3+40a
1-8a^3+40a
=8a^3 -2a+42a
=(2a+1)(2a-1)2a+42a
(2a+1)(2a-1)2a chia hết cho 3(vì là tích 3 số nguyên liên tiếp)(1)
42a chia hết cho 3(2)
Từ (1)(2)=>(2a+1)(2a-1)2a+42a chia hết cho 3
=>8a^3+40a chia hết cho 3(3)
2-8a^3 + 40a
=8*(a^3+5)
=> 8a^3 + 40a chia hết cho 8(4)
Có a là số lẻ suy ra a^3 là số lẻ,suy ra a^3+5 là tổng 2 số lẻ nên là số chẵn
=>a^3+5 chia hết cho 2=>8a^3 + 40a chia hết cho 2(5)
Từ (3)(4)(5)=>8a^3+40a chia hết cho 48
=>m^3 +20m chia hết cho 48 với m là số chẵn

đúng nhé

14 tháng 5 2015

Mình nghĩ 2k+1 là đại diện của số lẻ chứ !

30 tháng 5 2016

ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0

Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2

nhập hội ha

\(7^{2021}+7^{2020}-7^{2019}=7^{2019}.7^2+7^1.7^{2020}-7^{2019}.1\)

\(=7^{2019}\left(7^2+7-1\right)=7^{2019}\left(49+7-1\right)=7^{2019}.55\)

Mà \(55⋮11\Leftrightarrow7^{2019}.55⋮11\)

Vậy \(7^{2021}+7^{2020}-7^{2019}⋮11\)

1 tháng 7 2020

em ko biết em mới học lơp3thui

1 tháng 8 2015

6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252

= 252 ( 28 - 23 - 1) 

= 252 . 247 = 252 . 19 . 13

=> chia hết cho 19           

1 tháng 8 2015

cảm ơn nhiều ạ

chắc là lớp 8 hay 9 rồi đúng ko ạ ?

 

27 tháng 12 2021

bn vào olm.vn ik trong đấy có câu trả lời đấy!

gợi ý cho bn r đó nha ! 

nhớ like cho mik đấy!

 

27 tháng 12 2021

Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)

Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số

Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)

Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)

Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)

Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)

4 tháng 7 2019

k chia hết cho 2 nên k có dạng : \(2k\left(k\in Z\right)\)

Ta có : \(\left(m^3+20m\right)=\left[\left(2k\right)^3+20.2k\right]=8k^3+40k=8k\left(k^2+5\right)\)

\(k⋮2\Rightarrow k\left(k^2+5\right)⋮2\)

\(k⋮̸2\)thì : \(k\equiv1\left(mod2\right)\Leftrightarrow k^2\equiv1\left(mod2\right)\)

\(5\equiv-1\left(mod2\right)\Rightarrow k^2+5\equiv1+\left(-1\right)=0\left(mod2\right)\Rightarrow k\left(k^2+5\right)⋮2\)

\(\Rightarrow8k\left(k^2+5\right)⋮16\left(\cdot\right)\)

Xét : +> k chia hết cho 3 : \(k\left(k^2+5\right)⋮3\)

+> k chia 3 dư 1 : \(k\equiv1\left(mod3\right)\Leftrightarrow k^2\equiv1\left(mod3\right);5\equiv-1\left(mod3\right)\Rightarrow k^2+5\equiv1+\left(-1\right)=0\left(mod5\right)⋮3\)

+> k chia 3 dư 2 : \(k\equiv-1\left(mod3\right)\Leftrightarrow k^2\equiv\left(-1\right)\left(-1\right)=1\left(mod3\right);5\equiv-1\left(mod3\right)\Rightarrow k^2+5⋮3\)

\(\Rightarrow k\left(k^2+5\right)⋮3\left(\cdot\cdot\right)\)Mà 16 và 3 nguyên tố cùng nhau từ \(\left(\cdot\right);\left(\cdot\cdot\right)\Rightarrow8k\left(k^2-5\right)⋮16.3=48\left(đpcm\right).\)

A=2(1+2)+2^3(1+2)+...+2^2009(1+2)

=3(2+2^3+...+2^2009) chia hết cho 3

A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)

=7(2+2^4+...+2^2008) chia hết cho 7