Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}\)
\(=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)
\(=\frac{\left(a^2+b^2\right)\left(m-n\right)}{a^2+b^2}\)
\(=m-n\)
a) \(\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)
\(=\frac{\left(m-n\right)\left(a^2+b^2\right)}{a^2+b^2}=m-n\)
b) \(\frac{\left(ab+bc+cd+ad\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-b\right)}\)
\(=\frac{\left[b.\left(a+c\right)+d.\left(a+c\right)\right].abcd}{ac+bc+da+db+ab-b^2-ca+bc}\)
\(=\frac{\left(a+c\right)\left(d+b\right)abcd}{2bc+da+db+ab-b^2}\)
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)
Ta có \(\frac{2n+1}{2n-3}\) \(=\frac{2n-3+4}{2n-3}=1+\frac{4}{2n-3}\)
Để phân số \(\frac{2n+1}{2n-3}\) nguyên thì \(\frac{4}{2n-3}\) nguyên
=> 4 \(⋮\) 2n-3
hay 2n-3 \(\in\) Ư (4)={1;2;4;-1;-2;-4}
Ta có bảng sau
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | / | / | 1 | / | / |
Vậy n \(\in\) {2;1}
a^2n =x ; x>=0 mọi a; n thuộc n
\(P=2.a.x-3x+5.a.x-7x+3.a.x\)
\(P=10.a.x-10x=10x\left(a-1\right)\)
\(P>0\Rightarrow\left\{{}\begin{matrix}x>0\\a>1\end{matrix}\right.\) ; a>1 => a>0 => kết luân a>1
2n+3 + 2n+2 - 2n+1 + 2n = 2n.23 + 2n.22 - 2n.2 + 2n
= 2n.(23 + 22 - 2 + 1)
= 2n.11