K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

A=\(\dfrac{a^2+b^2+2ab+ab}{\sqrt{ab}\left(a+b\right)}=\dfrac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}\) =\(\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}=\dfrac{a+b}{\sqrt{ab}}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{3\sqrt{ab}}{a+b}\)

\(\ge2\sqrt{\dfrac{a+b}{\sqrt{ab}}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{3\sqrt{ab}}{a+b}\) =\(\ge4-\dfrac{3\left(a+b\right)}{2\left(a+b\right)}=4-\dfrac{3}{2}=\dfrac{5}{2}\)

dấu = xảy ra khi a=b

23 tháng 11 2017

Ôn tập Căn bậc hai. Căn bậc ba

AH
Akai Haruma
Giáo viên
12 tháng 6 2023

Biểu thức P đâu bạn?

18 tháng 6 2023

đây ạ

2:

\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)

=căn ab(6+7/b-5/a)

22 tháng 12 2021

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

14 tháng 9 2017

\(A=\frac{a^2+3ab+b^2}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a^2+2ab+b^2\right)+ab}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}\)

\(=\frac{\left(a+b\right)^2}{\sqrt{ab}\left(a+b\right)}+\frac{ab}{\sqrt{ab}\left(a+b\right)}=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Áp dụng bđt AM - GM ta có : \(A\ge2\sqrt{\frac{a+b}{\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a+b=\sqrt{ab}\)

làm tiếp đoạn của Đinh Đức Hùng

\(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{a+b}{\sqrt{ab}}+\frac{4\sqrt{ab}}{a+b}-\frac{3\sqrt{ab}}{a+b}\ge4-\frac{\frac{3}{2}\left(a+b\right)}{a+b}=4-\frac{3}{2}=\frac{5}{2}\)

25 tháng 11 2021

\(a,=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\\ b,=2a-6b+6b-5a=-3a\)

11 tháng 2 2022

Ta có \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{\sqrt{ab}}=4\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=4-\dfrac{2}{\sqrt{ab}}\)

Khi đó P = \(\dfrac{1}{\sqrt{ab}}\left(4-\dfrac{2}{\sqrt{ab}}\right)=-2\left(\dfrac{1}{\sqrt{ab}}-1\right)^2+2\le2\)

Dấu "=" khi a = b = 1 

NV
21 tháng 3 2022

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)

\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)

\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)