Chứng minh rằng (n3 - n) chia hết cho 6 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
n^3+11n chia hết cho 6
n^3+11n=n^3-n+12n
=(n-1)n(n+1)+12n
vậy n^3+11n luôn chia hết cho 6, với mọi n
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8
mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6
vậy 8(m-1)m(m+1) chia hết cho 48
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n
giả sử ( n3 - n ) chia hết cho 6 => ( n 3 - n ) phải chia hết cho 2 và 3
ta có : ( n3 - n ) = n ( n2 - 1 ) = n ( n - 1 ) ( n + 1 )
biểu thức trên có n ( n - 1 ) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 ( 1 )
lại thêm ( n + 1 ) nên nó là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 ( 2 )
từ ( 1 ) và ( 2 ) => kết luận ( n 3 - n ) chia hết cho 6 ( đúng như giả sử ) => đpcm