Cho ∆𝐴𝐵𝐶 vuông tại A (AB > AC), đường cao AH (𝐻 ∈ 𝐵𝐶). Qua C vẽ đường thẳng vuông góc với CB tại C cắt tia BA tại D. Gọi K là hình chiếu của C lên cạnh DH.
a) Chứng minh: CH.CB = AD.AB
b) Chứng minh: góc 𝐴𝐾𝐷= góc CBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) xét tg DHC và tg BAC có A=H =90 độ
C chung
=> tg DHC ~ tg BAC( g.g)
=> \(\dfrac{CH}{AC}=\dfrac{CD}{BC}=>CH.CB=CD.CA\)
c) ta có AC=AD+DC => DC=AC-AD=20-9,4=10,6 cm
tg DHC~ tg BAC => \(\dfrac{SDHC}{SBAC}=\left(\dfrac{DC}{BC}\right)^2=\left(\dfrac{10,6}{25}\right)^2\)
=> SDHC= SBAC.\(\left(\dfrac{10,6}{25}\right)^2\)
Chỗ này bạn thay số và tính nhé
a) Xét ABC cos A=90 độ=> BC2=AC2+AB2( dl Py ta go)
=> BC2= 202+152=625 => BC=25 cm
Xét tg ABC có BD pg B
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}=>\dfrac{AB}{BC+AB}=\dfrac{AD}{AD+DC}< =>\dfrac{15}{15+20}=\dfrac{AD}{BC}< =>\dfrac{15}{35}=\dfrac{AD}{25}=>AD=\dfrac{15.25}{35}~~9,4cm\)
a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có
góc KCB chung
=>ΔCKB đồng dạng với ΔCHI
=>CK/CH=CB/CI
=>CK*CI=CH*CB=CA^2
b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
góc KBC chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BD*BK=BH*BC=BA^2
c: BA^2=BD*BK
BA=BM
=>BM^2=BD*BK
=>ΔBMD vuông tại M
=>góc BMD=90 độ
d: SỬa đề: EA/EB*NB/NC*FC/FA
=NA/NB*NB/NC*NC/NA
=1
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: Xét ΔHAB vuông tại H và ΔHFD vuông tại H có
HB=HD
góc HAB=góc HFD
=>ΔHAB=ΔHFD
=>HA=HF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
AF vuông góc BD
=>ABFD là hình thoi
b: Xét ΔCAF có
AE,CH là đường cao
AE cắt CH tại D
=>D là trực tâm
=>FD vuông góc AC tại K
góc EKD=góc HCF
góc HKD=góc HAD
mà góc HCF=góc HAD
nên góc EKD=góc HKD
=>KD là phân giác của góc HKE
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(CH\cdot CB=AC^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCDB vuông tại C có CA là đường cao ứng với cạnh huyền DB, ta được:
\(AD\cdot AB=CA^2\left(2\right)\)
Từ (1) và (2) suy ra \(CH\cdot CB=AD\cdot AB\)
nho thay co giup em voi em dungf tu giac noi tiep khong dung