Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạngvới ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
goc HBD chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BH/BD=BK/BC
=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạng với ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
giải
tự vẽ hình nha
a, xét △ ABC và △ HBA có
góc B chung
góc BHA = góc BAC = 90 độ
➜ △ABC ∼ △HBA (g.g)
b, xét △CHM và △CKB có
góc C chung
góc CHM = góc CKB
➜ △CHM ∼ △CKB (g.g)
c, xét △DHB và △CKB có
góc B chung
góc BKC = góc BHD = 90 độ
➜ △DHB∼△CKB (g.g)
vì △DHB∼△CKB
➜DH/CK = HB/KB = DB/CB
xét △BKH và △BCD có
góc B chung
HB/KB = DB/CB (CMT)
➜△BKH ∼ △BCD
vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )
a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có
góc KCB chung
=>ΔCKB đồng dạng với ΔCHI
=>CK/CH=CB/CI
=>CK*CI=CH*CB=CA^2
b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
góc KBC chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BD*BK=BH*BC=BA^2
c: BA^2=BD*BK
BA=BM
=>BM^2=BD*BK
=>ΔBMD vuông tại M
=>góc BMD=90 độ
d: SỬa đề: EA/EB*NB/NC*FC/FA
=NA/NB*NB/NC*NC/NA
=1
a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBHA\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
hay \(BA^2=BH\cdot BC\)
b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có
\(\widehat{ICH}\) chung
Do đó: ΔCHI\(\sim\)ΔCKB(g-g)
Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)
hay \(CH\cdot CB=CK\cdot CI\)
a: HE vuông góc AC
AB vuông góc AC
=>HE//AB
b: Xét ΔCAH vuông tại H và ΔCBA vuông tại A có
góc ACH chung
=>ΔCAH đồng dạng với ΔCBA
c: Xét ΔKEH và ΔKBA có
góc KEH=góc KBA
góc EKH=góc BKA
=>ΔKEH đồng dạng với ΔKBA
=>KE/KB=KH/KA
=>EK/EB=HK/HA
Xét ΔEAB có MK//AB
nên MK/AB=EK/EB
Xét ΔHAB có KN//AB
nên KN/AB=HK/HA
=>MK/AB=KN/AB
=>MK=KN
a, Xét △BHA và △BAC có:
∠AHB=∠BAC (=90o), ∠ABC chung
⇒△BHA∼△BAC (g.g)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ BA2=BH.BC
b, Xét △IHC và △BKC có:
∠BKC=∠IHC (=90o), ∠KCB chung
=> △IHC∼△BKC (g.g)
⇒ \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\) ⇒ CH.CB=CI.CK
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi