Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H ∈ BC).

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạngvới ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

goc HBD chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BH/BD=BK/BC

=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

13 tháng 6 2023

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )

a: Xét ΔMAD và ΔMBE có

\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)

MA=MB

\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)

Do đó: ΔMAD=ΔMBE

=>AD=BE

Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

b: Ta có: AD=BE

AD=BC

Do đó: BE=BC

=>B là trung điểm của CE

a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có

góc KCB chung

=>ΔCKB đồng dạng với ΔCHI

=>CK/CH=CB/CI

=>CK*CI=CH*CB=CA^2

b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

góc KBC chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BD*BK=BH*BC=BA^2

c: BA^2=BD*BK

BA=BM

=>BM^2=BD*BK

=>ΔBMD vuông tại M

=>góc BMD=90 độ

d: SỬa đề: EA/EB*NB/NC*FC/FA

=NA/NB*NB/NC*NC/NA

=1

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔBHA\(\sim\)ΔBAC(g-g)

Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)

hay \(BA^2=BH\cdot BC\)

b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có 

\(\widehat{ICH}\) chung

Do đó: ΔCHI\(\sim\)ΔCKB(g-g)

Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)

hay \(CH\cdot CB=CK\cdot CI\)

29 tháng 4 2022

help