Tìm GTLN của đa thức:
N=2x-2x2-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Ta có: \(P=2x-2xy-2x^2-y^2\)
\(P=-x^2-2xy-y^2-x^2+2x\)
\(P=-\left(x^2+2xy+y^2\right)-\left(x^2-2x+1\right)+1\)
\(P=-\left(x+y\right)^2-\left(x-1\right)^2+1\)
\(P=-\left[\left(x+y\right)^2+\left(x-1\right)^2\right]+1\le1\forall x;y\)
Vậy GTLN của P là 1 khi x=-1; y=1.
Ta có: M=−x2−2x+5
=−(x2+2x−5)
=−(x2+2x+1)+6
=−(x+1)2+6
Vì −(x+1)2≤0∀x
⇒−(x+1)2+6≤6∀x
Dấu "=" xảy ra ⇔
x=−1⇔x=−1
Vậy MAXM=6⇔x=−1
Đặt A=4x−x2+3
=−x2+4x+3=−(x2−4x−3)
=−(x2−4x+4−7)
=−[(x−2)2−7]
=−(x−2)2+7
Ta có: −(x−2)2≤0⇒−(x−2)2+7≤7
Dấu " = " khi (x−2)2=0⇔x=2
Vậy MAXA=7 khi x = 2
a
\(N=x-x^2\)
\(\Leftrightarrow-N=x^2-x\)
\(\Leftrightarrow-N+\frac{1}{4}=x^2-x+\frac{1}{4}\)
\(\Leftrightarrow-N+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
\(\Leftrightarrow-N=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N_{max}=-\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=x-x^2\)
\(=-x^2+2.x.\frac{1}{2}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le0+\frac{1}{4};\forall x\)
Hay \(N\le\frac{1}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy MAX \(N=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(A=2x-2x^2-5\)
\(A=-2\left(x^2-x\right)-5\)
\(A=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(A=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)
Có \(2\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2\le0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)với mọi x
=> \(A\le-4\frac{1}{2}\)với mọi x
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\)<=> \(x=\frac{1}{2}\)
KL: \(A_{max}=-4\frac{1}{2}\)<=> \(x=\frac{1}{2}\)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
2x - 2x2 - 5
= -2( x2 - x + 1/4 ) - 9/2
= -2( x - 1/2 )2 - 9/2 ≤ -9/2 ∀ x
Dấu "=" xảy ra <=> x = 1/2
Vậy GTLN của biểu thức = -9/2 <=> x = 1/2
N = 2x - 2x2 - 5
= -2x2 + 2x - 5
= -2(x2 - x + \(\dfrac{5}{2}\))
= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{9}{4}\))
= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) - \(\dfrac{9}{2}\)
= -2(x - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{2}\) \(\le-\dfrac{9}{2}\)
Vậy GTLN của N là \(-\dfrac{9}{2}\) khi x - \(\dfrac{1}{2}\) = 0 \(\Rightarrow\) x = \(\dfrac{1}{2}\).