K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

a) \(\dfrac{x}{x+1}=\dfrac{x+5}{x+7}\)

\(\Leftrightarrow x\left(x+7\right)=\left(x+1\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+7x=\left(x+1\right)x+\left(x+1\right).5\)

\(\Leftrightarrow x^2+7x=x^2+x+5x+5\)

\(\Leftrightarrow x^2+7x=x^2+6x+5\)

\(\Leftrightarrow x^2+7x-6x-x^2=5\)

\(\Leftrightarrow x=5\)

Vậy...

b) \(\dfrac{x+7}{x+4}=\dfrac{x-1}{x-2}\)

\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x+7\right)x-\left(x+7\right).2=\left(x+4\right)x-\left(x+4\right)\)

\(\Leftrightarrow x^2+7x-2x+14=x^2+4x-x-4\)

\(\Leftrightarrow x^2+5x+14=x^2+3x-4\)

\(\Leftrightarrow x^2+5x+14-3x-x^2=-4\)

\(\Leftrightarrow2x+14=-4\)

\(\Leftrightarrow2x=-18\)

\(\Leftrightarrow x=-9\)

Vậy...

c) \(\dfrac{x+2}{x-2}=\dfrac{x-3}{x+3}\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow\left(x+2\right)x+\left(x+2\right).3=\left(x-2\right)x-\left(x-2\right).3\)

\(\Leftrightarrow x^2+2x+3x+6=x^2-2x-3x+6\)

\(\Leftrightarrow x^2+5x+6=x^2-5x+6\)

\(\Leftrightarrow x^2+5x+6-6+5x-x^2=0\)

\(\Leftrightarrow10x=0\)

\(\Leftrightarrow x=0\)

Vậy...

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

7 tháng 4 2020

a) Ta có : ( x+3 ).( x- 5 ) = 0

suy ra: x+3 = 0 hoặc x - 5 = 0 

suy ra : x = -3 hoặc x = 5 

KL : Vậy x = -3 hoặc x = 5 

11 tháng 7 2017

câu a+b dùng quy tắc chuyển vế

c, 3.(1/2-x)-5.(x-1/10)=-7/4

=>(3.1/2-3x)-(5x-5.1/10)=-7/4

=>3/2-3x-5x+1/2=-7/4

=>(3/2+1/2)-(3x+5x)=-7/4

=> 2-8x=-7/4

=>8x=15/4

=>x=15/4:8

=>x=15/32

11 tháng 7 2017

a) 2.(1/4 - 3x) = 1/5 - 4x
=> 1/2 - 6x = 1/5 -4x
=> -6x + 4x = 1/5 - 1/2
=> -2x         = -3/10 = 3/20
b) 4.(1/3 - x) + 1/2 = 5/6 +x 
=> 4/3 - 4x + 1/2 = 5/6 +x
=> -4x - x = 5/6 - 4/3 - 1/2
=> -5x = -1
=> x= 1/5
c) 3. (1/2 - x) -5. ( x - 1/10) = -7/4
=> 3/2 - 3x - 5x + 1/2 = -7/4
=> -3x - 5x = -7/4 - 3/2 - 1/2 
=> -8x = -15/4
=> x = 15/32

a: \(\Leftrightarrow x\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)

mà -3<x<30

nên \(x\in\left\{-2;-1;1;2;3;4;6;9;12;18\right\}\)

b: \(\Leftrightarrow x\in\left\{0;4;-4;8;-8;12;-12;...\right\}\)

mà -16<=x<20

nên \(x\in\left\{-16;-12;-8;-4;0;4;8;12;16\right\}\)

c: \(\Leftrightarrow x-1+4⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{2;0;3;-1;5;-3\right\}\)

d: \(\Leftrightarrow2x+4-5⋮x+2\)

\(\Leftrightarrow x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-1;-3;3;-7\right\}\)

b: \(\Leftrightarrow2\left(x^2-2x+1\right)-3x^2+5x-1=0\)

\(\Leftrightarrow2x^2-4x+2-3x^2+5x-1=0\)

\(\Leftrightarrow-x^2+x+1=0\)

\(\Leftrightarrow x^2-x-1=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-1\right)=5\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{5}}{2}\\x_2=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)

c: \(\Leftrightarrow x^2+6x+9-1-\left(x^2+8x-4x-32\right)=0\)

\(\Leftrightarrow x^2+6x+8-x^2-4x+32=0\)

=>2x+40=0

hay x=-20

d: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)

\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)

=>8x+76=36

hay x=-5