K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

\(\sqrt[3]{y-\sqrt{y^2+1}}\times\sqrt[3]{y+\sqrt{y^2+1}}\)

\(=\sqrt[3]{\left[y^2-\left(y^2+1\right)\right]}=\sqrt[3]{-1}=-1\)

nên ta có thể đặt \(\sqrt[3]{y-\sqrt{y^2+1}}=t\)

\(\Rightarrow\sqrt[3]{y+\sqrt{y^2+1}}=-\dfrac{1}{t}\)

\(\sqrt[3]{y-\sqrt{y^2+1}}=t\)

\(\Leftrightarrow y-\sqrt{y^2+1}=t^3\)

\(\Leftrightarrow t^3+\sqrt{1+y^2}=y\)

\(\Leftrightarrow t^6+2t^3\sqrt{y^2+1}+1+y^2=y^2\)

\(\Leftrightarrow\sqrt{y^2+1}=\dfrac{-t^6-1}{2t^3}\)

\(\Leftrightarrow y^2=\dfrac{t^{12}+2t^6+1}{4t^6}-1\)

\(\Leftrightarrow y^2=\dfrac{t^{12}-2t^6+1}{4t^6}\)

\(\Leftrightarrow y=\dfrac{t^6-1}{2t^3}\)

- - -

\(x=t-\dfrac{1}{t}=\dfrac{t^2-1}{t}\)

\(\Rightarrow x^3=\dfrac{t^6-3t^4+3t^2-1}{t^3}=2y-\dfrac{3t^2\left(t^2-1\right)}{t^3}=2y-\dfrac{3\left(t^2-1\right)}{t}=2y-3x\)

\(A=x^4+x^3y+3x^2+xy-2y^2+2014\)

\(=x^3\left(x+y\right)+3\left(x-y\right)\left(x+y\right)+y\left(x+y\right)+2014\)

\(=\left(x+y\right)\left(x^3+3x-2y\right)+2014\)

\(=\left(x+y\right)\left(2y-3x+3x-2y\right)+2014\)

= 2014

11 tháng 9 2017

Ta có: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)

\(\Leftrightarrow x^3=y-\sqrt{y^2-1}+y+\sqrt{y^2+1}+3\left(\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\right)\sqrt[3]{y-\sqrt{y^2+1}}.\sqrt[3]{y+\sqrt{y^2+1}}\)

\(\Leftrightarrow x^3=2y-3x\)

Thế vô B ta được

\(B=\left(2y-3x\right)x+\left(2y-3x\right)y+3x^2+xy-2y^2+2014\)

\(=2014\)

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

9 tháng 7 2023

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)