Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))
\(\Leftrightarrow x=4y\)
Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)
\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)
Vì \(\sqrt[3]{y-\sqrt{y^2+1}}\times\sqrt[3]{y+\sqrt{y^2+1}}\)
\(=\sqrt[3]{\left[y^2-\left(y^2+1\right)\right]}=\sqrt[3]{-1}=-1\)
nên ta có thể đặt \(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Rightarrow\sqrt[3]{y+\sqrt{y^2+1}}=-\dfrac{1}{t}\)
\(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Leftrightarrow y-\sqrt{y^2+1}=t^3\)
\(\Leftrightarrow t^3+\sqrt{1+y^2}=y\)
\(\Leftrightarrow t^6+2t^3\sqrt{y^2+1}+1+y^2=y^2\)
\(\Leftrightarrow\sqrt{y^2+1}=\dfrac{-t^6-1}{2t^3}\)
\(\Leftrightarrow y^2=\dfrac{t^{12}+2t^6+1}{4t^6}-1\)
\(\Leftrightarrow y^2=\dfrac{t^{12}-2t^6+1}{4t^6}\)
\(\Leftrightarrow y=\dfrac{t^6-1}{2t^3}\)
- - -
\(x=t-\dfrac{1}{t}=\dfrac{t^2-1}{t}\)
\(\Rightarrow x^3=\dfrac{t^6-3t^4+3t^2-1}{t^3}=2y-\dfrac{3t^2\left(t^2-1\right)}{t^3}=2y-\dfrac{3\left(t^2-1\right)}{t}=2y-3x\)
\(A=x^4+x^3y+3x^2+xy-2y^2+2014\)
\(=x^3\left(x+y\right)+3\left(x-y\right)\left(x+y\right)+y\left(x+y\right)+2014\)
\(=\left(x+y\right)\left(x^3+3x-2y\right)+2014\)
\(=\left(x+y\right)\left(2y-3x+3x-2y\right)+2014\)
= 2014
Ta có: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=y-\sqrt{y^2-1}+y+\sqrt{y^2+1}+3\left(\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\right)\sqrt[3]{y-\sqrt{y^2+1}}.\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=2y-3x\)
Thế vô B ta được
\(B=\left(2y-3x\right)x+\left(2y-3x\right)y+3x^2+xy-2y^2+2014\)
\(=2014\)