Cho tứ giác ABCD có góc C = 105 độ, góc D = 130 độ, góc A:B=2:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
Xét tứ giác ABCD, ta có:
góc A + góc B + góc C + góc D = 360 độ (Định lý ...)
=> góc A + góc B = 360 độ - (góc C + góc D) = 360 độ - (50 độ + 60 độ) = 250 độ
Vì A:B = 3:2
=> 2A = 3B
=> góc A = 250 độ : (3+2) x 3 = 150
góc B = 250 độ - 150 độ = 100 độ
Tứ giác ABCD có :
\(\widehat{A}+\widehat{C}=50+130=180^o\)
\(\widehat{B}+\widehat{D}=60+120=180^o\)
Vậy tứ giác ABCD là hình thang
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)
Tứ giác ABCD có : góc A + góc B + góc C + góc D = 3600
(góc A + góc B) + (góc A - góc B) = 1050 + 150
2.góc A = 1200 => góc A = 600 => góc B = 1050 - 600 = 450
góc C + góc D = 3600 - (góc A + góc B)
2.góc D + góc D = 3600 - 1050
3.góc D = 2550 => góc D = 850 => góc C = 850.2 = 1700
A + B = 1050
A - B = 150
A = (1050 + 150) : 2 = 600
B = (1050 - 150) : 2 = 450
Tứ giác ABCD có:
A + B + C + D = 3600
600 + 450 + C + D = 3600
C + D = 3600 - 1050
C + D = 2550
\(C=2D\Rightarrow\frac{C}{2}=\frac{D}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{C}{2}=\frac{D}{1}=\frac{C+D}{2+1}=\frac{255^0}{3}=85^0\)
\(\frac{C}{2}=85^0\Rightarrow C=85^0\times2=170^0\)
\(\frac{D}{1}=85^0\Rightarrow D=85^0\)
Vậy \(A=60^0;B=45^0;C=170^0;D=85^0\)
Ta có : \(^{\widehat{C_1}+\widehat{C_2}=180^o}\)(hai góc kề bù)
Mà \(\widehat{C_2}=120^o\)(gt)
Suy ra : \(\widehat{C_1}=180^o-120^o=60^o\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^o\) (tổng bốn góc trong 1 tứ giác)
Mà \(\widehat{A}=130^o;\widehat{B}=90^o;\widehat{C}=60^o\)
Nên : \(\widehat{D}=360^o-130^o-90^o-60^o=80^o\)