Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}=2\widehat{B}=130^o\Rightarrow\widehat{B}=130^o\div2=65^o\)
Theo đ/lí tổng ba góc trong một tứ giác ta có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow130^o+65^o+100^o+\widehat{D}=360^o\)
\(\Leftrightarrow295^o+\widehat{D}=360^o\)
\(\Leftrightarrow\widehat{D}=360^o-295^o=65^o\)
#Học tốt!!!
~NTTH~
Ta có: góc D = 360 độ - 65 độ - 117 độ - 71 độ = 107 độ
Lại có: góc ngoài tại đỉnh D là góc kề bù với góc D nên số đo góc ngoài tại đỉnh D là: 180 độ - 107 độ = 73 độ.
Chúc may mắn và nhớ k cho mình với nhoa!
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
xét tam giác DIC ta có \(\widehat{IDC}\)+\(\widehat{ICD}\)=180-115=65
=>\(\widehat{ADB}\)+\(\widehat{BCD}\)=2.65=130
=>\(\widehat{DAB}\)+\(\widehat{ABC}\)=360-130=230
kết hợp điều kiên ta có hệ:\(\begin{cases}A+B=230\\A-B=50\end{cases}\)
A=140 và B=90
Gọi số đo góc D là xo thì \(\widehat{C}=\left(x+10\right)^o;\widehat{B}=\left(x+20\right)^o;\widehat{A}=\left(x+30\right)^o\)
Do tổng các góc trong tứ giác bằng 360o nên ta có phương trình:
x + x + 10 + x + 20 + x + 30 = 360
\(\Rightarrow x=75\)
Vậy \(\widehat{D}=75^o,\) từ đó suy ra các góc còn lại.
Tứ giác ABCD có : góc A + góc B + góc C + góc D = 3600
(góc A + góc B) + (góc A - góc B) = 1050 + 150
2.góc A = 1200 => góc A = 600 => góc B = 1050 - 600 = 450
góc C + góc D = 3600 - (góc A + góc B)
2.góc D + góc D = 3600 - 1050
3.góc D = 2550 => góc D = 850 => góc C = 850.2 = 1700
A + B = 1050
A - B = 150
A = (1050 + 150) : 2 = 600
B = (1050 - 150) : 2 = 450
Tứ giác ABCD có:
A + B + C + D = 3600
600 + 450 + C + D = 3600
C + D = 3600 - 1050
C + D = 2550
\(C=2D\Rightarrow\frac{C}{2}=\frac{D}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{C}{2}=\frac{D}{1}=\frac{C+D}{2+1}=\frac{255^0}{3}=85^0\)
\(\frac{C}{2}=85^0\Rightarrow C=85^0\times2=170^0\)
\(\frac{D}{1}=85^0\Rightarrow D=85^0\)
Vậy \(A=60^0;B=45^0;C=170^0;D=85^0\)