K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 8 2021

\(\left(3n+5\right)⋮\left(n^2+1\right)\Rightarrow3n\left(3n+5\right)=9n^2+15n⋮\left(n^2+1\right)\)

\(9n^2+15n=9n^2+9+15n+25-34=9\left(n^2+1\right)+5\left(3n+5\right)-34\)

Suy ra \(34⋮\left(n^2+1\right)\)

mà \(n\)là số tự nhiên nên \(n^2+1\inƯ\left(34\right)=\left\{1,2,17,34\right\}\)

suy ra \(n\in\left\{0,1,4\right\}\).

Thử lại đều thỏa mãn. 

3 tháng 8 2018

ta có:

\(\frac{6n-7}{4n-1}=1.\frac{6n-7}{4n-1}=\frac{3}{3}.\frac{6n-7}{4n-1}=\frac{3\left(6n-7\right)}{3\left(4n-1\right)}\)\(=\frac{12n-14}{12n-3}=\frac{12n-3}{12n-3}-\frac{11}{12n-3}\)

\(=1-\frac{11}{12n-3}=>12n-3\)thuộc tập hợp ước của 11

=>12n-3=1=>n=\(\frac{1}{3}\) (loại) vì ko thuộc N

12n-1=11=>n=1

Vậy n=1

Nhớ tk nha=)))

25 tháng 9 2020

Ta có: c|a => Tồn tại số n để: a = nc 

b|a => Tồn tại số n để a = mb 

=> nc = mb => nc \(⋮\)b mà (c;b) = 1 => n \(⋮\)

=> n = b.k

=> a = nc = bck 

=> a \(⋮\)bc hay bc|a

27 tháng 12 2016

Ta thấy : 12769 = 113 x 113

Giả sử A = n2 + 11n + 2 chia hết cho 12769

=> 4A = 4 (n2+ 11n + 2 ) chia hết cho 12769

     4A = 4n2 + 44n + 8 chia hết cho 12769

     4A = [ (2n)2+ 2 x 2n x 11 + 121 ] - 113 chia hết cho 12769

=> 4A = (2n+11)- 113 chia hết cho 12769 (1). 

Vậy thì 4A = (2n+11)- 113 chia hết cho 113.

=> (2n+1)2 chia hết cho 113 ( vì 113 chia hết cho 113 )

=> 2n + 1 chia hết cho 113 ( vì 113 là số nguyên tố )

=> (2n+1)2 chia hết cho 1132 = 12769 (2)

Từ (1) và (2) => 113 chia hết cho 12769 ( Vô lí )

Vậy n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.

30 tháng 7 2015

a)38-3n chia hết cho n

=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}

b)n+5 chia hết cho n+1

=>n+1+4 chia hết cho n+1

=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}

=>n thuộc{0;1;3}

c)3n+4 chia hết cho n-1

3(n-1)+7chia hết cho n-1

=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}

=> n thuộc{2;8}

d)3n+2 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}

=>n thuộc{2;6}

có j ko hiểu hỏi mk

12 tháng 1 2018

Để a chia hết cho 2 và 5 thì a có tận cùng là 0 hay y=0

Khi đó : a = 3886x0

Để a chia hết cho 9 thì 3+8+8+6+x+0 chia hết cho 9

hay 25+x chia hết cho 9 => x=2 ( vì x là chữ số )

Vậy số a là : 388620

Tk mk nha

Để 1x5y chia hết cho 2 thì y = 0 ,  2 , 4 , 6 , 8

Để 1x5y chia hết cho 5 thì y = 0 , 5 

=> y = 0 

Để 1x5y chia hết cho 3 thì 1 + x + 5 + 0 = 6+ x chia hết cho 3

=> x = 0 , 3 ,6 ,9 

Để 1x5y chia hết cho 6 thì 1 + x + 5 + 0 = 6+x chia hết cho 6 

=> x = 0 ; 6 

Để 1x5y chia hết cho 9 thì 1 + x + 5 + 0 = 6 + x chia hết cho 9 

=> x = 3 

=> Ko tồn tại x 

23 tháng 11 2018

n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

23 tháng 11 2018

Hello

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

18 tháng 12 2023

a, 4n + 5 ⋮ n  ( n \(\in\) N*)

           5 ⋮  n

\(\in\)Ư(5) = {-5; -1; 1; 5}

Vì n \(\in\) N nên n \(\in\) {1; 5}

b, 38 - 3n ⋮ n  (n \(\in\) N*)

     38 ⋮ n

\(\in\) Ư(38)

38 =  2.19

Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}

Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}

18 tháng 12 2023

c, 3n + 4  ⋮ n - 1 ( n \(\in\) N; n ≠ 1)

   3(n - 1) + 7 ⋮ n - 1  

                   7 ⋮ n  -1

  n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

lập bảng ta có:

n - 1 -7 -1 1 7
n -6 (loại) 0 2

8

 

Theo bảng trên ta có n \(\in\) {0 ;2; 8}