K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 8 2021

\(\left(3n+5\right)⋮\left(n^2+1\right)\Rightarrow3n\left(3n+5\right)=9n^2+15n⋮\left(n^2+1\right)\)

\(9n^2+15n=9n^2+9+15n+25-34=9\left(n^2+1\right)+5\left(3n+5\right)-34\)

Suy ra \(34⋮\left(n^2+1\right)\)

mà \(n\)là số tự nhiên nên \(n^2+1\inƯ\left(34\right)=\left\{1,2,17,34\right\}\)

suy ra \(n\in\left\{0,1,4\right\}\).

Thử lại đều thỏa mãn. 

4 tháng 12 2021

Muốn tạo số chia hết cho 4 thì 2 chữ số tận cùng phải chia hết cho 4

Gọi các số cần tìm có dạng \(\overline{abc}\left(a,b,c\in N;0< a< 10;0\le b,c< 10\right)\)

Mà \(\overline{abc}⋮4\Rightarrow\overline{bc}\in\left\{00;04;12;16;20;24;40;44;60;64\right\}\) 

Với mỗi cặp \(\overline{bc}\) ta có \(a\in\left\{1;2;4;6\right\}\left(4\text{ cách chọn}\right)\)

Vậy có thể tạo \(4\cdot10=40\) số thỏa yêu cầu đề

10 tháng 10 2019

do |x+4|> hoặc = 0

y^2 > hoặc = 0 => |x+4| thuộc 0;1;2;3

tự làm tiếp nhé e a sắp thi r

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

8 tháng 4 2015

Giả sử m;n;p không có số nào chia hết cho 3

=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N) 

=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)

=> n^2 + p^2 cia 3 dư 2

Mà m^2 chia 3 dư 1 

=> m^2 khác n^2 + p^2 ( trái vói giả thiết )

Vậy m;n;p có ít nhất1 số chia hết cho 3

=>m*n*p chia hết cho 3                                (1)

Chứng minh tương tự :

m*n*p chia hếu cho 5                                    (2)

Từ (1) và (2) và  (3;5)=1

=>m*n*p chia heetscho 3*5 =15

30 tháng 7 2018

Ủa mấy cái này tưởng mấy em được học rồi nhỉ?

a, \(|3x-4|+|4y+1|=0\)

\(\Rightarrow\hept{\begin{cases}|3x-4|=0\\|4y+1|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-4=0\\4y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{4}\end{cases}}}\)

b, Lập bảng xét dấu giá trị tuyệt đối

\(x\)                                   \(-\frac{5}{2}\)                                   \(\frac{1}{3}\)

\(2x+5\)  \(-5-2x\)   \(0\)  \(2x+5\)                  \(||\) \(2x+5\)

\(3x-1\)  \(1-3x\)       \(||\)\(1-3x\)                    \(0\)\(3x-1\)

\(VT\)                                    \(||\)                                      \(||\)

TH1: \(x< -\frac{5}{2}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=-5-2x\\|3x-1|=1-3x\end{cases}}\)

\(\Rightarrow-5-2x+1-3x=3\)\(\Leftrightarrow-4-5x=3\Leftrightarrow x=-\frac{7}{5}\left(L\right)\)

TH2: \(-\frac{5}{2}\le x\le\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=2x+5\\|3x-1|=1-3x\end{cases}}\)

\(\Rightarrow2x+5+1-3x=3\)\(\Leftrightarrow6-x=3\Leftrightarrow x=3\left(L\right)\)

TH3: \(x>\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}2x+5|=2x+5\\|3x-1|=3x-1\end{cases}}\)

\(\Rightarrow2x+5+3x-1=3\)\(\Leftrightarrow5x+4=3\Leftrightarrow5x=-1\Leftrightarrow x=-\frac{1}{5}\left(L\right)\)

Vậy PT đã cho vô nghiệm.

P/S: Không hiểu ở đâu thì nhắn chị nhé.

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

15 tháng 12 2021

lấy 750.3:10=225