K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 8 2021

Xét dãy các số: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).

Có \(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên số đó là hợp số. 

Vậy dãy số trên gồm toàn hợp số. 

1 tháng 11 2014

Có. Nếu lấy A = 2.3.4....2015.2016.2017, thì  A chia hết cho 2, 3, ..., 2015, 2016, 2017.

Và dãy 2015 số bắt đầu từ A+2 đều là hợp số:

A + 2; A + 3; ....; A + 2015; A + 2016; A + 2017

Bởi vì A + 2 chia hết cho 2

A + 3 chia hết cho 3 

.....

A + 2015 chia hết cho 2015

A + 2016 chia hết cho 2016

A + 2017 chia hết cho 2017

29 tháng 10 2014

Chắc là không em à ! Đến lớp cô giảng cho !

gọi BCNN(1;2;3;...;2000)=a

2000 số liên tiếp là:

a;a+1;a+2;...;a+1999

trong 2000 số đó thì a chia hết cho 1;2;3;...;1999

=>a;a+1;...;a+1999 là hợp số

=>có 2000 số tự nhiên liên tiếp là hợp số

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

9 tháng 3 2017

NHANH NÀO

5 tháng 11 2014

2015 số tự nhiên liên tiếp ,à

 

 

3 tháng 2 2018

Gọi A = 2 . 3 . 4 . 5 . . . . . 2016

A + 2 chia hết cho 2

A + 3 chia hết cho 3

.....

A + 2016 chia hết cho 2016

=> Trong dãy số tự nhiên có thể tìm được 2015 STN liên tiếp mà không có 1 SNT nào.

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...

 

 

6 tháng 2 2019

C1 : *Xét m < 0 thì m + |m| = m - m = 0

                              m|m| = -|m2| < 0

         Nên m + |m| > m|m|

       *Xét m = 0 thì m + |m| = m|m| (=0)

       *Xét 0 < m < 2 thì m + |m| = 2m

                                   m|m| = m2 

Xét hiệu m2 - 2m = m(m - 2) < 0 V 0 < m < 2

Nên m + |m| > m|m| 

     *Xét m > 2 thì m + |m| = 2m

                            m|m| = m2

Xét hiệu m2 - 2m = m(m - 2) > 0 V m > 2

Nên m + |m| < m|m|

6 tháng 2 2019

C2, Gọi BCNN(1 ; 2 ; 3 ; ... ; 2002) = a

2002 số liên tiếp cần xét là : a ; a + 1 ; a + 2 ; a + 3 ; ... ; a + 2001

Trong 2002 số này thì  a \(⋮\)1 ; 2 ; 3 ; ... ; 2001

=> a ; a + 1 ; ... ; a + 2001 là hợp số 

=> có 2002 số tự nhiên liên tiếp là hợp số