K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a/ A = \(n^3-4n^2+4n-1=\left(n-1\right)\left(n^2-3n+1\right)\) là số nguyên tố. Khi và chỉ khi :

\(\left[{}\begin{matrix}n-1=1\\n^2-3n+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=3\end{matrix}\right.\)

Thử lại ta thấy n = 3 là thỏa mãn.

Vậy n = 3

17 tháng 8 2017

b/ \(n^3-6n^2+9n-2=\left(n-2\right)\left(n^2-4n+1\right)\) là số nguyên tố. Khi và chỉ khi:

\(\left[{}\begin{matrix}n-2=1\\n^2-4n+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=4\end{matrix}\right.\)

Thử lại ta thấy n = 4 là thỏa mãn

Vậy n = 4

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
31 tháng 10 2015

A=(n2-n) - (3n-3)= (n-1)(n-3) là số nguyên tố thì

n-1=1;-1 và n-3 là số nguyên tố => n= 2;0  khi đó n-3=-1;3 là số nguyên tố => n=0 là thỏa mãn

hoặc n-3=1;-1 và n-1 là số nguyên tố => n=4;2 khi đó n-1=3;1 là số nguyên tố => n=4 là thỏa mãn

Vậy n= 0 hoặc n=4

 

23 tháng 10 2021

1: \(8n^2-4n+1⋮2n+1\)

\(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

5 tháng 1

Tìm \(x\) thế \(x\) nào ở đâu trong bài toán vậy em?

12 tháng 1

em nhìn nhầm n ạ