Max-Min:
A=|x2+x|-3
B=(|x|+1)2+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2x+50\)
\(A=x^2-2x+1+49\)
\(A=\left(x-1\right)^2+49\ge49\)
Dấu "=" xảy ra khi:
\(x=1\)
\(B=12x-x^2\)
\(B=-x^2+12x\)
\(B=-x^2+12x-36+36\)
\(B=-\left(x^2-12x+36\right)+36\)
\(B=-\left(x-6\right)^2+36\le36\)
Dấu "=" xảy ra khi:
\(x=6\)
\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(C=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(C=\left[x\left(x-6\right)+1\left(x-6\right)\right]\left[x\left(x-3\right)-2\left(x-3\right)\right]\)
\(C=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi:
\(x^2-5x=0\)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
Không có max
`a)sqrt{x^2-2x+5}`
`=sqrt{x^2-2x+1+4}`
`=sqrt{(x-1)^2+4}`
Vì `(x-1)^2>=0`
`=>(x-1)^2+4>=4`
`=>sqrt{(x-1)^2+4}>=sqrt4=2`
Dấu "=" xảy ra khi `x=1.`
`b)2+sqrt{x^2-4x+5}`
`=2+sqrt{x^2-4x+4+1}`
`=2+sqrt{(x-2)^2+1}`
Vì `(x-2)^2>=0`
`=>(x-2)^2+1>=1`
`=>sqrt{(x-2)^2+1}>=1`
`=>sqrt{(x-2)^2+1}+2>=3`
Dấu "=" xảy ra khi `x=2`
\(A=\left|x^2+x\right|-3\)
\(\left|x^2+x\right|\ge0\forall x\)
\(A=\left|x^2+x\right|-3\ge-3\)
Dấu "=" xảy ra khi:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(B=\left(\left|x\right|+1\right)^2+5\)
\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1\Rightarrow\left(\left|x\right|+1\right)^2\ge1\)
\(\Rightarrow B=\left(\left|x\right|+1\right)^2+5\ge6\)
Dấu "=" xảy ra khi:
\(\left|x\right|=0\Rightarrow x=0\)
A=\(\left|x2+x\right|-3\)
Vì \(\left|x2+x\right|\)\(\ge0\) ( với mọi x thuộc R )
\(\Rightarrow\left|x2+x\right|-3\ge-3\) ( với mọi x thuộc R )
\(\Rightarrow A\ge3\)
\(\Rightarrow\) Min A = 3 \(\Leftrightarrow\) x2+x=0
\(\Leftrightarrow\) x(2+1)=0
\(\Leftrightarrow\) 3x=0
\(\Leftrightarrow\) x=0:3=0
Vậy Min A = 3 \(\Leftrightarrow\) x=0
B=\(\left(\left|x\right|+1\right)^2+5\)
Vì \(\left|x\right|\ge0\) ( với mọi x thuộc R )
\(\Rightarrow\left|x\right|+1\ge1\) ( với mọi x thuộc R )
\(\Rightarrow\left(\left|x\right|+1\right)^2\ge1^2=1\) ( với mọi x thuộc R )
\(\Rightarrow\left(\left|x\right|+1\right)^2+5\ge1+5=6\) ( với mọi x thuộc R )
\(\Rightarrow B\ge6\) ( với mọi x thuộc R )
\(\Rightarrow\) Min B = 6 \(\Leftrightarrow\) x=0
Vậy Min B = 6 \(\Leftrightarrow\) x=0
Bài này không thể tìm Max được bạn nhé :)) Chỉ có thể tìm Min