K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(A=\left|x^2+x\right|-3\)

\(\left|x^2+x\right|\ge0\forall x\)

\(A=\left|x^2+x\right|-3\ge-3\)

Dấu "=" xảy ra khi:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(B=\left(\left|x\right|+1\right)^2+5\)

\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1\Rightarrow\left(\left|x\right|+1\right)^2\ge1\)

\(\Rightarrow B=\left(\left|x\right|+1\right)^2+5\ge6\)

Dấu "=" xảy ra khi:

\(\left|x\right|=0\Rightarrow x=0\)

16 tháng 8 2017

A=\(\left|x2+x\right|-3\)

\(\left|x2+x\right|\)\(\ge0\) ( với mọi x thuộc R )

\(\Rightarrow\left|x2+x\right|-3\ge-3\) ( với mọi x thuộc R )

\(\Rightarrow A\ge3\)

\(\Rightarrow\) Min A = 3 \(\Leftrightarrow\) x2+x=0

\(\Leftrightarrow\) x(2+1)=0

\(\Leftrightarrow\) 3x=0

\(\Leftrightarrow\) x=0:3=0

Vậy Min A = 3 \(\Leftrightarrow\) x=0

B=\(\left(\left|x\right|+1\right)^2+5\)

\(\left|x\right|\ge0\) ( với mọi x thuộc R )

\(\Rightarrow\left|x\right|+1\ge1\) ( với mọi x thuộc R )

\(\Rightarrow\left(\left|x\right|+1\right)^2\ge1^2=1\) ( với mọi x thuộc R )

\(\Rightarrow\left(\left|x\right|+1\right)^2+5\ge1+5=6\) ( với mọi x thuộc R )

\(\Rightarrow B\ge6\) ( với mọi x thuộc R )

\(\Rightarrow\) Min B = 6 \(\Leftrightarrow\) x=0

Vậy Min B = 6 \(\Leftrightarrow\) x=0

Bài này không thể tìm Max được bạn nhé :)) Chỉ có thể tìm Min

18 tháng 9 2017

\(A=x^2-2x+50\)

\(A=x^2-2x+1+49\)

\(A=\left(x-1\right)^2+49\ge49\)

Dấu "=" xảy ra khi:

\(x=1\)

\(B=12x-x^2\)

\(B=-x^2+12x\)

\(B=-x^2+12x-36+36\)

\(B=-\left(x^2-12x+36\right)+36\)

\(B=-\left(x-6\right)^2+36\le36\)

Dấu "=" xảy ra khi:

\(x=6\)

\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(C=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(C=\left[x\left(x-6\right)+1\left(x-6\right)\right]\left[x\left(x-3\right)-2\left(x-3\right)\right]\)

\(C=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)\)

\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

\(C=\left(x^2-5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi:

\(x^2-5x=0\)

\(\Rightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

27 tháng 6 2021

Không có max

`a)sqrt{x^2-2x+5}`

`=sqrt{x^2-2x+1+4}`

`=sqrt{(x-1)^2+4}`

Vì `(x-1)^2>=0`

`=>(x-1)^2+4>=4`

`=>sqrt{(x-1)^2+4}>=sqrt4=2`

Dấu "=" xảy ra khi `x=1.`

`b)2+sqrt{x^2-4x+5}`

`=2+sqrt{x^2-4x+4+1}`

`=2+sqrt{(x-2)^2+1}`

Vì `(x-2)^2>=0`

`=>(x-2)^2+1>=1`

`=>sqrt{(x-2)^2+1}>=1`

`=>sqrt{(x-2)^2+1}+2>=3`

Dấu "=" xảy ra khi `x=2`

27 tháng 6 2021

c.ơn bạn nhiều