Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
2.
a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)
Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)
Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
\(A=\left|x^2+x\right|-3\)
\(\left|x^2+x\right|\ge0\forall x\)
\(A=\left|x^2+x\right|-3\ge-3\)
Dấu "=" xảy ra khi:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(B=\left(\left|x\right|+1\right)^2+5\)
\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1\Rightarrow\left(\left|x\right|+1\right)^2\ge1\)
\(\Rightarrow B=\left(\left|x\right|+1\right)^2+5\ge6\)
Dấu "=" xảy ra khi:
\(\left|x\right|=0\Rightarrow x=0\)
A=\(\left|x2+x\right|-3\)
Vì \(\left|x2+x\right|\)\(\ge0\) ( với mọi x thuộc R )
\(\Rightarrow\left|x2+x\right|-3\ge-3\) ( với mọi x thuộc R )
\(\Rightarrow A\ge3\)
\(\Rightarrow\) Min A = 3 \(\Leftrightarrow\) x2+x=0
\(\Leftrightarrow\) x(2+1)=0
\(\Leftrightarrow\) 3x=0
\(\Leftrightarrow\) x=0:3=0
Vậy Min A = 3 \(\Leftrightarrow\) x=0
B=\(\left(\left|x\right|+1\right)^2+5\)
Vì \(\left|x\right|\ge0\) ( với mọi x thuộc R )
\(\Rightarrow\left|x\right|+1\ge1\) ( với mọi x thuộc R )
\(\Rightarrow\left(\left|x\right|+1\right)^2\ge1^2=1\) ( với mọi x thuộc R )
\(\Rightarrow\left(\left|x\right|+1\right)^2+5\ge1+5=6\) ( với mọi x thuộc R )
\(\Rightarrow B\ge6\) ( với mọi x thuộc R )
\(\Rightarrow\) Min B = 6 \(\Leftrightarrow\) x=0
Vậy Min B = 6 \(\Leftrightarrow\) x=0
Bài này không thể tìm Max được bạn nhé :)) Chỉ có thể tìm Min