Một cửa hàng có 3 tấm vải , dài tổng cộng 126m. Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba, thì số vải của ba tấm bằng nhau. Hãy tính chiều dài của 3 tấm vải lúc ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
o(〃^▽^〃)o
Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.
Gọi độ dài của 3 tấm vải lần lượt là x,y,zx,y,z (x,y,z>0x,y,z>0)
Khi đó, do tổng độ dài của chúng là 126m nên ta có
x+y+z=126
Sau khi bán, thì tấm vải thứ nhất còn \(\frac{1}{2}\), tấm vải thứ hai còn \(\frac{1}{3}\), và tấm vải thứ 3 còn \(\frac{1}{4}\). Vậy ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tchat dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{126}{9}=14\)
\(\frac{x}{2}=14\Rightarrow x=28\)
\(\frac{y}{3}=14\Rightarrow y=42\)
\(\frac{z}{4}=14\Rightarrow56\)
Do đó, độ dài tấm vải thứ nhất là 28m, độ dài tấm vải thứ 2 là 42m, độ dài tấm vải thứ 3 là 56m.
tấm vải thứ nhất là :
126 .1/2= 63 ( cm)
tấm vải thứ 2 lÀ :
126.2/3=84 (cm)
tấm vải thứ 3 là :
126.3/4=94,5 (cm)
chiều dài 3 tấm vải lúc ban đầu là :
63+84+94,5 =241,5( cm)
mik chỉ bt làm vậy thôi nhé , k bt đúng hay sai nữa , nếu đúng thì chép , sai thì cho mình xin lỗi trược ạ
#hoctot
Gọi x,y,z lần lượt là độ dài của các tấm vải thứ nhất , thứ hai và thứ 3
ta có số vải còn lại là : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{126}{9}=14\)
\(\Rightarrow\hept{\begin{cases}x=2\times14=28m\\y=3\times14=42m\\z=4\times14=56m\end{cases}}\)
Gọi độ dài lúc đầu tấm vải thứ nhất, thứ hai và thứ ba lần lượt là a, b, c (m)
ĐK: 0 < a, b, c < 126
+) Theo bài ra ta có: a + b + c = 126
+) Sau khi họ bán đi 1/2 tấm vải thứ nhất thì tấm vải thứ nhất còn lại:
\(a-\frac{a}{2}=\frac{a}{2}\) (1)
+) Sau khi họ bán đi 2/3 tấm vải thứ hai thì tấm vải thứ hai còn lại:
\(b-\frac{2b}{3}=\frac{b}{3}\) (2)
+) Sau khi họ bán đi 3/4 tấm vải thứ ba thì tấm vải thứ ba còn lại:
\(c-\frac{3c}{4}=\frac{c}{4}\) (3)
Từ (1); (2); (3)
=> Áp dụng tính chất dãy tỉ số bằng nhau và a + b + c = 126
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)
=> a = 28 (t/m)
b = 42 (t/m)
c = 56 (t/m)
Vậy, độ dài lúc đầu của tấm vải thứ nhất, thứ hai và thứ ba lần lượt là 28m, 42m, 56m
Gọi chiều dài mỗi tấm vải lần lượt là x (m); y (m); z (m) Theo đề, ta có: x/2 = y/3 = z/4 và x + y + z = 108 Theo tính chất của dãy tỉ số bằng nhau, ta có: Vậy Tấm vải 1 dài 24 mét; Tấm vải 2 dài 36 mét; Tấm vải 3 dài 48 mét.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
Ta có:1/2 tấm 1=1/3 tấm 2 =1/4 tấm 3
Tấm 1 hai phần;tấm 2 ba phần;tấm 3 bốn phần
Tấm 1:108:(2+3+4)x2=24(m)
Tấm 2:24:2x3=36(m)
Tấm 3:36:3x4=48(m)
Đáp số:Tấm 1:24m
Tấm 2:36m
Tấm 3:48m
Gọi 3 tấm vải lần lượt là \(a;b;c\left(a;b;c>0\right)\)
Khi bán đi mỗi tấm vải ta dc dãy tỉ số bằng nhau :
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{126}{9}=14\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=14\Leftrightarrow a=28\\\dfrac{b}{3}=14\Leftrightarrow b=42\\\dfrac{c}{4}=14\Leftrightarrow c=56\end{matrix}\right.\)
Vậy ....