Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(∈\) N*)
- Theo đề bài ta có:
+ Sau khi bán 1/2 tấm thứ nhất thì tấm thứ nhất còn lại: a−a.1/2 =a.1/2 =a/2 (1)
+ Sau khi bán 2/3 tấm thứ hai thì tấm thứ hai còn lại: b−b.2/3 =b.1/3 =b/3 (2)
+ Sau khi bán 3/4 tấm vải thứ ba thì tấm thứ ba còn lại: c−c.3/4 =c.1/4 =c4 (3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau ⇒a/2 =b/3 =c/4
+ Ba tấm vải dài tổng cộng 108m \(⇒\) a+b+c=108(m)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 =b/3 =c/4 =a+b+c/2+3+4 =108/9 =12
⇒a=12.2=24(m) ; b=12.3=36(m); c=12.4=48(m)
Ta có:1/2 tấm 1=1/3 tấm 2 =1/4 tấm 3
Tấm 1 hai phần;tấm 2 ba phần;tấm 3 bốn phần
Tấm 1:108:(2+3+4)x2=24(m)
Tấm 2:24:2x3=36(m)
Tấm 3:36:3x4=48(m)
Đáp số:Tấm 1:24m
Tấm 2:36m
Tấm 3:48m
vẽ sơ đồ ra
Tổng số phần là :
2+3+4=9 ( phần )
số m vải có trong 1 phần là :
108 : 9 = 12 ( m )
Chiều dài tấm vải thứ nhất là :
12*2 =24 (m)
chiều dài tấm vải thứ 2 là :
12*3 =36 (m)
chiều dài tấm vải thứ 3 là :
12*4 +48 (m)
gọi 3 tấm vải ban đầu có độ dài lần lượt là x , y , z
x+y +z = 108
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-1/2).x = 1/2.x
sau đi bán 2/3 tấm vải một vậy tấm vải 1 còn lại ( 1-2/3).y = 1/3.y
sau đi bán 1/2 tấm vải một vậy tấm vải 1 còn lại ( 1-3/4).z = 1/4.z
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{y}=\frac{x+y+z}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow x=24\)
\(\Rightarrow y=36\)
\(\Rightarrow z=48\)
Vậy ba tấm vải có chiều dài lần lượt là 24 m , y = 36 m , z = 48 m
Gọi chiều dài ban đầu của tấm vải thứ nhất, thứ hai vaf thứ 3 lần lượt là a, b và c (a, b, c \(\in\) N)
Theo bài ra: Cắt tấm vải thứ nhất đi \(\frac{1}{2}\) thì còn lại là: \(1-\frac{1}{2}=\frac{1}{2}\)
Cắt tấm vải thứ hai đi \(\frac{2}{3}\) thì còn lại là: \(1-\frac{2}{3}=\frac{1}{3}\)
Cắt tấm vải thứ ba đi \(\frac{3}{4}\) thì còn lại là: \(1-\frac{3}{4}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\) \(BCNN\left(1;1;1\right)=1\)
\(\frac{1a}{2.1}=\frac{1b}{3.1}=\frac{1c}{4.1}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
Tấm vải thứ nhất dài là: \(\frac{a}{2}=12\Rightarrow a=24\) (m)
Tấm vải thứ hai dài là: \(\frac{b}{3}=12\Rightarrow b=36\) (m)
Tấm thứ ba dài là: \(\frac{c}{4}=12\Rightarrow c=48\) (m)
Đáp số: Tấm vải thứ nhất: 24 m
Tấm vải thứ 2: 36 m
Tấm vải thứ 3: 48 m
Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
o(〃^▽^〃)o
Ta có :
\(\frac{1}{2}\)tấm thứ nhất= \(\frac{1}{3}\)tấm thứ 2= \(\frac{1}{4}\)tấm thứ 3
tỉ số giứa 3 loại vải là:
\(\frac{1}{2}\):\(\frac{1}{3}\):\(\frac{1}{4}\)=2:1,5:1
Số m vải thứ nhất là
126:(2+1.5+1)*2=56(m)
Số m vải thứ hai là
126:(2+1.5+1)*1.5=42(m)
Số m vải thứ ba là
126-56-42=28(m)
Đáp số: tấm vải thứ nhất :56 m
tấm vải thứ hai : 42 m
tấm bải thứ ba : 28 m
Gọi chiều dài mỗi tấm vải lần lượt là x (m); y (m); z (m) Theo đề, ta có: x/2 = y/3 = z/4 và x + y + z = 108 Theo tính chất của dãy tỉ số bằng nhau, ta có: Vậy Tấm vải 1 dài 24 mét; Tấm vải 2 dài 36 mét; Tấm vải 3 dài 48 mét.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m