K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

\(\left(\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{x^2-9}\right):\left(1-\dfrac{1}{x+3}\right)=\left(\dfrac{3\left(x+2\right)}{x^2-9}\right):\left(\dfrac{x+2}{x+3}\right)=\left(x-3\right)\)

14 tháng 8 2017

dễ mà bn

5 tháng 8 2021

a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

4 tháng 7 2023

Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

5 tháng 10 2021

\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)

5 tháng 10 2021

a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)

b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)

30 tháng 12 2021

\(\dfrac{-3}{5}-x=\dfrac{21}{10}\)

\(x=\dfrac{-3}{5}-\dfrac{21}{10}\)

\(x=\)-\(\dfrac{27}{10}\)

 

\(x:\dfrac{2}{9}=\dfrac{9}{2}\)

\(x.\dfrac{9}{2}=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}:\dfrac{9}{2}\)

\(x=1\)

 

\(\dfrac{x}{9}=\dfrac{5}{3}\)

\(x.3=5.9\)

\(x.3=45\)

\(x=45:3=15\)

 

\(x:\left(\dfrac{2}{5}\right)^3=\left(\dfrac{5}{2}\right)^3\)

\(x:\dfrac{8}{125}=\dfrac{125}{8}\)

\(x.\dfrac{125}{8}=\dfrac{125}{8}\)

\(x=\dfrac{125}{8}:\dfrac{125}{8}=1\)

 

23 tháng 2 2023

a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)

   ( x-1)(x+1) = 21.3

    x2 + x - x -1 = 63

     x2                = 63 + 1

     x2               = 64

    x = + - 8

b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)

        x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)

       x              = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)

       x             = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)

       x            = \(\dfrac{10}{17}\)

c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)

   (x  - \(\dfrac{5}{12}\)):  \(\dfrac{23}{12}\)                     =   \(\dfrac{7}{46}\)

  (x - \(\dfrac{5}{12}\))                               =   \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)

  x   - \(\dfrac{5}{12}\)                                =    \(\dfrac{7}{12}\)

 x                                            =    \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)

x                                             =     1

d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\)  = 3\(\dfrac{3}{5}\)

   x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\)      =  \(\dfrac{18}{5}\)

   x\(\dfrac{7}{12}\)                    = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)

   x\(\dfrac{7}{12}\)                   = \(\dfrac{14}{15}\)

  x                         = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)

 x                          = \(\dfrac{8}{5}\)

 

 

 

11 tháng 5 2022

Bạn ơi mik ra \(\dfrac{x^3+45x-54}{12\left(x-3\right)\left(x+3\right)}\) có đúng không bạn?

11 tháng 5 2022

Mình rút chx hết bạn bạn gửi cách làm bạn qua mình tham khảo đc k ạ?