K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

6x:22000=3 y

→2x.3 x:22000=3y

→2 x-200 =3y:3x=3y−x

Ta có 3y−x luôn lẻ mà 2x−2000 chỉ lẻ khi x−2000=0→x=2000

Khi đó 3y−x=2x−2000=1→y−x=0→y=x=2000

Vậy x=y=2000

7 tháng 7 2023

 a) Ta thấy \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\) và \(x^2+y^2=\left(x+y\right)^2-2xy\) nên nếu đặt \(x+y=S,xy=P\) thì ta có hệ: \(\left\{{}\begin{matrix}S^3-3SP=2\\S^2-2P=2\end{matrix}\right.\) . Từ pt (2) suy ra \(P=\dfrac{S^2-2}{2}\). Thay vào (1), ta có \(S^3-3S.\dfrac{S^2-2}{2}=2\) \(\Leftrightarrow-S^3+6S-4=0\) hay \(S^3-6S+4=0\)

 Đến đây ta dễ dàng nhẩm ra được \(S=2\). Do đó ta lập sơ đồ Horner:

\(x\) 1 0 -6 4
\(2\) 1 2 -2 0

Nghĩa là từ \(S^3-6S+4=0\) ta sẽ có \(\left(S-2\right)\left(S^2+2S-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}S=2\\S=-1\pm\sqrt{3}\end{matrix}\right.\).

 Nếu \(S=2\) thì \(P=\dfrac{S^2-2}{2}=1\). Ta thấy \(S^2-4P=0\) nên x, y sẽ là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow\left(X-1\right)^2=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\).

 Nếu \(S=-1+\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1-\sqrt{3}\). Ta thấy \(S^2-4P>0\) nên x, y là nghiệm của pt \(X^2-\left(\sqrt{3}-1\right)X+1-\sqrt{3}=0\)\(\Delta=2\sqrt{3}\) nên \(X=\dfrac{\sqrt{3}-1\pm\sqrt{2\sqrt{3}}}{2}\) hay \(\left(x;y\right)=\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-2\sqrt{3}}{2}\right)\) và hoán vị của nó. 

 Nếu \(S=-1-\sqrt{3}\) thì \(P=\dfrac{S^2-2}{2}=1+\sqrt{3}\). Mà \(S^2-4P=-2\sqrt{3}< 0\) nên không tìm được nghiệm (x; y)

 Như vậy hệ phương trình đã cho có các cặp nghiệm \(\left(1;1\right);\left(\dfrac{\sqrt{3}-1+\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2}\right)\)\(\left(\dfrac{\sqrt{3}-1-\sqrt{2\sqrt{3}}}{2};\dfrac{\sqrt{3}-1+2\sqrt{3}}{2}\right)\)

b) Ta thấy \(x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)  nên nếu đặt \(S=x+y,P=xy\) thì ta có hệ \(\left\{{}\begin{matrix}S^3-3SP+P=3\\S+P=3\end{matrix}\right.\), suy ra \(P=3-S\) 

\(\Rightarrow S^3-3S\left(3-S\right)+3-S=3\)

\(\Leftrightarrow S^3-10S+3S^2=0\)

\(\Leftrightarrow S\left(S^2+3S-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}S=0\\S=2\\S=-5\end{matrix}\right.\)

 Nếu \(S=0\) thì \(P=3\). Khi đó vì \(S^2-4P< 0\) nên không tìm được nghiệm (x; y)

 Nếu \(S=2\) thì suy ra \(P=1\). Ta có \(S^2-4P=0\) nên x, y là nghiệm của pt \(X^2-2X+1=0\Leftrightarrow X=1\) hay \(\left(x;y\right)=\left(1;1\right)\)

 Nếu \(S=-5\) thì suy ra \(P=8\). Ta có \(S^2-4P< 0\) nên không thể tìm được nghiệm (x; y).

 Như vậy hpt đã cho có nghiệm duy nhất \(\left(1;1\right)\)

15 tháng 1 2022

ĐKXĐ:\(x\ne5\)

\(x\le\dfrac{6}{x-5}\\ \Leftrightarrow x\left(x-5\right)\le6\\ \Leftrightarrow x^2-5x-6\le0\\ \Leftrightarrow-1\le x\le6\)

Đầu tiên ta tính tổng vế trong ngoặc trước

Tách tổng trên thành các nhóm:

0,1 + 0,2 +...+ 0,8 +0,9 = 4,5

1,0 + 1,1 +...+ 1,8 + 1,9= 14,5

2 để riêng

Tổng = 4,5 +14,5 + 2 = 21

Ta có: 21 x 75% x ( 7,5 - 7,5 ) 

= 21 x 75% x 0 

= 0

 

6 tháng 5 2023

(0,1+0,2+...+1,9+2) x 75% x (3:0,4-7,5)

=(2+2+2+2+2+0,5)x75% x (7,5-7,5)

=10,5x75%x0

=0

31 tháng 1 2020

Èo, bài này mà :)))

Gợi ý nhé bạn Khải béo :

Xét phương trình theo ẩn x thì được****************

Để phương trình này có nghiệm x nguyên thì delta phải là số chính phương. Hay delta = ************** là số chính phương

<=> y = 0 hoạc 4y^2 - 11 = a^2

<=> (2y - a)(2y + a) = 11 => y = 0; 3; -3

6 tháng 2 2020

ôi các bạn tôi!!!

4 tháng 3 2018

\(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\)

\(\Leftrightarrow\frac{xy}{3x}-\frac{3}{3x}=\frac{x}{3x}\)

\(\Leftrightarrow xy-3=x\)

\(\Leftrightarrow xy-x=3\)

\(\Leftrightarrow x\left(y-1\right)=3=\left(-1\right).\left(-3\right)=3.1\)( vì x, y là các số nguyên )

\(TH1:\)

\(\orbr{\begin{cases}x=1\\y-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=4\end{cases}}\)

\(\orbr{\begin{cases}x=3\\y-1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)

\(TH2:\)

\(\orbr{\begin{cases}x=-1\\y-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=-2\end{cases}}\)

\(\orbr{\begin{cases}x=-3\\y-1=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\y=0\end{cases}}\)

Vậy .......

4 tháng 3 2018

Giải:     Có y/3-1/x=1/3

y/3-1/3=1/x

Suy ra y-1/3=1/x

Suy ra (y-1).x=3

Suy ra y-1 và x thuộc Ư(3)

Vì x,y thuộc Z

Do đó ta có bảng giá trị:

y-113-1-3
x31-3-1
y240-2

Vậy (x,y)= {...........}

nha
 

14 tháng 7 2017

\(pt\Leftrightarrow\left|x-3\right|=3-x\)

*)xét x>=3

*)Xét x<3

dễ nhé

Mình xin phép sửa đề: `x/5=y/3` và `x^3-y^3=98`

Đặt `x/5=y/3=K`

`-> x=5K, y=3K`

`x^3-y^3=98 -> (5K)^3-(3K)^3=98`

`-> 98K^6=98`

`-> K^6=98 \div 98`

`-> K^6=(+-1)^6`

`-> K=1 ; -1`

Với `K=1 -> x=5*1=5 ; y=3*1=3`

Với `K=-1 -> x=5*(-1)=-5 l y=3*(-1)=-3`