Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Lời giải:
Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:
\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)
Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.
Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$
$\Leftrightarrow x=2x-3=3$ (thỏa mãn)
Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$
$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)
Vậy $x=3$ hoặc $x=1$
\(2\left(x-4\right)\sqrt{x-2}+\left(x-2\right)\sqrt{x+1}+2\left(x-3\right)=0\)
ĐK:\(x\ge2\)
\(\Leftrightarrow2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-4\right)\frac{x-2-1}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x+1-4}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-4\right)\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x-3}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}-2\right)=0\)
Suy ra x=3
đặt \(a=\sqrt{x+3}\), \(b=\sqrt{x-1}\)
khi đó \(\sqrt{x^2+2x-3}=ab\) và \(4=a^2-b^2\)
PT: (a - b)(1 + ab) = a2 - b2 hay (a - b)(1 + ab) = (a - b)(a + b).
* a - b = 0 (tự giải).
* 1 + ab = a + b hay 1 + 2ab + (ab)2 = a2 + 2ab + b2
hay 1 + (x2 + 2x - 3) = (x + 3) + (x - 1) (tự giải)
mik rất muốn tl giúp bạn nhưng mik ms có hok lớp 8 thôi Ayakashi
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)
\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\frac{3\left(x^2-x-1\right)-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}-\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)
\(\Leftrightarrow\frac{3x^2-5x-2}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-6}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)
Dễ thấy: \(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\) vô nghiệm
\(\Rightarrow x-2=0\Rightarrow x=2\)
Giải phương trình: \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=3\)
giúp mình với
\(ĐK:-3\le x\le6\)
Đặt \(t=\sqrt{x+3}+\sqrt{6-x}\left(t>0\right)\Rightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\frac{t^2-9}{2}\)
Phương trình trở thành \(t-\frac{t^2-9}{2}=3\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left(t-3\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\left(tm\right)\\t=-1\left(L\right)\end{cases}}\)
Với t = 3 thì \(\sqrt{x+3}+\sqrt{6-x}=3\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\Rightarrow\orbr{\begin{cases}x=6\\x=-3\end{cases}}\left(tm\right)\)
Vậy phương trình có tập nghiệm S = {6; -3}
Đk: tự xác định
\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)
Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)
Ta có: \(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0y=-2\sqrt{2}+2\sqrt{3}\left(vôlý\right)\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)
Vậy: Hệ phương trình vô nghiệm
\(pt\Leftrightarrow\left|x-3\right|=3-x\)
*)xét x>=3
*)Xét x<3
dễ nhé