Bài 1 Rút gọn
a/ √9 - √17 x √ 9 + √17 ( √ chỗ số 9 kéo dài ra 17 )
b/ 2√2 ( √3 - 2 ) + ( 1 + 2√2 ) ^2 + 2√6
Bài 2 Giải phương trình sau :
a/ √4x + 20 - 3√ 5 + x + 4/3 √9x + 45 ( kéo dài √ ) = 6
b/ √25x - 25 - 15/2√x-1/9 = 6 + √x-1 (kéo dài √ )
Bài 3 So sánh
√2014 + √2016 với 2√2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
hay x=-1
b: \(\sqrt{25x-25}-\dfrac{15}{2}\cdot\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}\cdot1.5=6\)
=>x-1=16
hay x=17
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\))
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)
\(\Leftrightarrow12\sqrt{x-1}=24\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)
\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=4+1\)
\(\Leftrightarrow x=5\left(tm\right)\)
b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))
\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)
\(\Leftrightarrow-4\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=4-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Bài 3:
\(\left(\sqrt{2014}+\sqrt{2016}\right)^2=4030+2\sqrt{2014.2016}=4030+2\sqrt{2015^2-1}< 2\sqrt{2015^2}+2\sqrt{2015^2}=4\sqrt{2015^2}\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)