Cho x2y-y2x+x2z-z2x+y2x+z2y=2xyz. Chứng minh rằng trong ba số x, y, z ít nhất cũng có hai số bằng nhau hoặc đối nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 y - y2 x) + (x2 z - xyz) + (z2 y - z2 x) + (y2 z - xyz) = (x-y)(xy+zx-z2 -yz)=(x-y)(x-z)(y+z)=0
Giải giùm rồi đấy bạn
x2y - y2x+x2z - z2x +y2z +z2y - 2xyz = 0
=> xy.(x - y) + xz. (x - z) + zy.(y + z) - xyz - xyz = 0
=> [xy.(x - y) - xyz] + [xz.(x - z) - xyz] + zy,(y +z) = 0
=> xy.(x - y - z) + xz.(x - z - y) + zy.(y +z) = 0
<=> (x-y-z). (y+z).x + zy.(y +z) = 0
<=> (y +z). [x(x - y - z) + zy] = 0
<=> y + z = 0 hoặc x(x - y - z) + zy = 0
+) y + z = 0 => y;z đối nhau
+) x(x- y - z) + zy = 0 => x (x - y) - z.(x - y) = 0 => (x - z)(x - y) = 0 => x = z hoặc x = y
Vậy ....
tu gia thiet =>(x2y-y2x)+(x2z-2xyz+y^2z)-(z2x-z2y)=0
<=>xy(x-y)+z(x-y)^2-z^2(x-y)=0
<=>(x-y)(xy-zx-zy-z^2)=0
<=>..... ta dc dpcm
\(x^2y-xy^2+x^2z-xz^2+y^2z+yz^2=2xyz\)
\(\Leftrightarrow\left(x^2y-xy^2\right)+\left(x^2z-xyz\right)-\left(xz^2-yz^2\right)-\left(xyz-y^2z\right)=0\)
\(\Leftrightarrow xy\left(x-y\right)+xz\left(x-y\right)-z^2\left(x-y\right)-yz\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(xy+xz-z^2-yz\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[x\left(y+z\right)-z\left(y+z\right)\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-z\right)\left(y+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\)\(\left(đpcm\right)\)
Bài này bạn phải chuyển 2xyz sang vế kia rồi nhóm hợp lí mới ra được
(x2y+z2y-2xyz)-(y2x-y2z)+(x2z-z2x)=0
y(x2+z2-2xz)-y2(x-z)+xz(x-z)=0
y(x-z)(x-z)-y2(x-z)+xz(x-z)=0
(x-z)(xy-yz-y2+xz)=0
(x-z)(x-y)(y+z)=0
Nên x-z=0 hoặc x-y=0 hoặc y+z=0
Do đó: x=z hoặc x=y hoặc y=-z
Bài này bạn phải chuyển 2xyz sang vế kia rồi nhóm hợp lí mới ra được.
(x^2.y +z^2.y -2xyz) -(y^2.x -y^2.z)+(x^2.z -x.z^2) =0
y(x^2 +z^2 -2xz)- y^2(x-z) +xz(x-z) =0
y(x-z)(x-z) -y^2(x-z)+xz(x-z)=0
(x-z)(xy-yz-y^2 +xz)=0
(x-z)(x-y)(y+z)=0
Nên x-z =0 hoặc x-y=0 hoặc y+z=0
Do đó: x=z hoặc x=y hoặc y=-z