K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

(xy - yx) + (xz - xyz) + (zy - zx) + (yz - xyz) = (x-y)(xy+zx-z-yz)=(x-y)(x-z)(y+z)=0

Giải giùm rồi đấy bạn

14 tháng 8 2016

Giải giùm mik nha!

9 tháng 8 2016

bạn nhiều câu hỏi quá

NV
23 tháng 10 2020

\(\Leftrightarrow\left(x^2y-2xyz+z^2y\right)+\left(x^2z-y^2x-z^2x+y^2z\right)=0\)

\(\Leftrightarrow y\left(x-z\right)^2+xz\left(x-z\right)-y^2\left(x-z\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(xy-yz+zx-y^2\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(x\left(y+z\right)-y\left(y+z\right)\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(x-y\right)\left(y+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\) hay có 2 số bằng hoặc đối nhau

15 tháng 10 2021

\(x^2y-xy^2+x^2z-xz^2+y^2z+yz^2=2xyz\)

\(\Leftrightarrow\left(x^2y-xy^2\right)+\left(x^2z-xyz\right)-\left(xz^2-yz^2\right)-\left(xyz-y^2z\right)=0\)

\(\Leftrightarrow xy\left(x-y\right)+xz\left(x-y\right)-z^2\left(x-y\right)-yz\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(xy+xz-z^2-yz\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[x\left(y+z\right)-z\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-z\right)\left(y+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\)\(\left(đpcm\right)\)

3 tháng 7 2015

x2y - y2x+x2z - z2x +y2z +z2y - 2xyz = 0 

=> xy.(x - y) + xz. (x - z) + zy.(y + z) - xyz - xyz = 0 

=> [xy.(x - y) - xyz] + [xz.(x - z) - xyz] + zy,(y +z) = 0 

=> xy.(x - y - z) + xz.(x - z - y) + zy.(y +z) = 0

<=> (x-y-z). (y+z).x + zy.(y +z) = 0 

<=> (y +z). [x(x - y - z) + zy] = 0 

<=> y + z = 0 hoặc x(x - y - z) + zy = 0 

+) y + z = 0 => y;z đối nhau

+) x(x- y - z) + zy = 0 => x (x - y)  - z.(x - y) = 0  => (x - z)(x - y) = 0 => x = z hoặc x = y

Vậy ....

2 tháng 4 2017

Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh 

\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)

Áp dụng BĐT AM-GM ta có: 

\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)

\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)

23 tháng 4 2017

t nghĩ ôg có chút nhầm lẫn , phải là sigma (1/2b+a+3) </ 1/2 

16 tháng 8 2015

tu gia thiet =>(x2y-y2x)+(x2z-2xyz+y^2z)-(z2x-z2y)=0

                    <=>xy(x-y)+z(x-y)^2-z^2(x-y)=0

                     <=>(x-y)(xy-zx-zy-z^2)=0

        <=>..... ta dc dpcm

10 tháng 12 2017

bạn ơi hình như có chút sai đề