Chứng minh rằng: 49n+1+49n chia hết cho 50( với n là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n\left(n+2\right)\left(49n^2-1\right)\)
\(=n\left(n+2\right)\left(49n^2-49+48\right)\)
\(=n\left(n+2\right)\left(49n^2-49\right)+48n\left(n+2\right)\)
\(=n\cdot\left(n+2\right)\cdot49\cdot\left(n^2-1\right)+48n\left(n+2\right)\)
\(=49\cdot n\cdot\left(n-1\right)\left(n+1\right)\left(n+2\right)+48n\left(n+2\right)\)
\(=49\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)\)
Ta có: n-1;n;n+1;n+2 là bốn số tự nhiên liên tiếp
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)
\(\Leftrightarrow49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)(1)
Ta có: \(48⋮24\)(Do 48 là bội của 24)
nên \(48n\left(n+2\right)⋮24\)(2)
Từ (1) và (2) suy ra \(49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)⋮24\)
\(\Leftrightarrow n\cdot\left(n+2\right)\cdot\left(49n^2-1\right)⋮24\)(đpcm)
Ta có: \(49^n+77^n-29^n-1\)
\(=\left(49^n-1\right)+\left(77^n-29^n\right)\)
mà \(49^n-1⋮\left(49-1\right)=48\)
và \(77^n-29^n⋮\left(77-29\right)=48\)
nên \(49^n+77^n-29^n-1⋮48\)
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
Ta có: \(49^{n+1}+49^n\)
\(=49^n.49+49^n\)
\(=49^n\left(49+1\right)\)
\(=49^n.50⋮50\forall n\in N\)
-> ĐPCM.
\(49^{n+1}+49^n\Leftrightarrow49^n.\left(49+1\right)\Leftrightarrow49^n.50⋮50\)
vậy \(49^{n+1}+49^n\) chia hết cho 50 (đpcm)