K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Ta có :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+............+\dfrac{1}{2^n}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..........+\dfrac{1}{2^{n-1}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{n-1}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^n}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^n}< 1\)

\(\Leftrightarrow A< 1\rightarrowđpcm\)

Vậy ...............

8 tháng 8 2017

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^n}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{n-1}}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{n-1}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^n}\right)\\ A=1-\dfrac{1}{2^n}< 1\)

Vậy \(A< 1\) với mọi n

21 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

18 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)

29 tháng 6 2017

Đặt 111...1 ( n chữ số) = x, ta có:

b = 222...2 ( n chữ số) = 2x.

a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)

Ta có:

\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)

\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)

Vật a-b là một số chính phương

* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30 

=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3    (1)

1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40 

=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4    (2)

Từ (1) và (2) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4 

=> 1/21 +1/22 +1/23 +...+1/40 >7/12   (*)

* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20 

=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2   (3)

1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30 

=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3   (4)

Từ (3) và (4) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3 

=> 1/21 +1/22 +1/23+...+1/40 <5/6     (**)

Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6   (đpcm)

9 tháng 5 2019

Bài hơi dài , thông cảm

Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)

\(>\frac{10}{30}=\frac{1}{3}(1)\)

Ta có  : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)

\(>\frac{10}{40}=\frac{1}{4}(2)\)

Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)

Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

\(< \frac{10}{20}=\frac{1}{2}(3)\)

Ta lại có : ....

Làm tiếp đi :v

13 tháng 10 2016

Ôf bạn thích diễn viên hàn à

mình thích khác cơ

mình thích ca sĩ hàn

kim tan 

(le min ho )

trong phim người thừa kế í

13 tháng 10 2016

\(A=1+3+5+...+\left(2n-1\right)\)

\(A=\left(\frac{\left(2n-1-1\right)}{2}+1\right).\left(2n-1+1\right):2\)

\(A=\left(\frac{2n-2}{2}+1\right).2n:2\)

\(A=\left(\frac{2.\left(n-1\right)}{2}+1\right).n\)

\(A=\left(n-1+1\right).n\)

\(A=n^2\)

Chứng tỏ...

17 tháng 10 2018

\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(M< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow M< 1\left(đpcm\right)\)

\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)

\(c,\)\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)

19 tháng 6 2015

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

3 tháng 12 2015

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương