K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Ta có :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+............+\dfrac{1}{2^n}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+..........+\dfrac{1}{2^{n-1}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{n-1}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^n}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^n}< 1\)

\(\Leftrightarrow A< 1\rightarrowđpcm\)

Vậy ...............

8 tháng 8 2017

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^n}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{n-1}}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{n-1}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^n}\right)\\ A=1-\dfrac{1}{2^n}< 1\)

Vậy \(A< 1\) với mọi n

8 tháng 8 2017

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}\)

\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\text{…}-\frac{1}{2^n}\)

\(A=1-\frac{1}{2^n}\)

Vậy A < 1 với n thuộc N*

20 tháng 3 2016

nhanh giúp mình

23 tháng 4 2021

Ai trả lời nhanh nhất thì mình sẽ k cho.

30 tháng 5 2020

a)Đặt A =  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

=> A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

=> A < 1 - 1/100

=> A < 99/100 < 1

b) \(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A có giá trị nguyên <=> 5 chia hết cho n - 2

<=> n - 2 thuộc Ư(5) = {1; -1; 5; -5}

Lập bảng:

 n - 2 1  -1 5 -5
  n 3 1  7  -3

Vậy ....

30 tháng 5 2020

Ta có: A = \(\frac{10^{2019}+1}{10^{2020}+1}\)

=> 10A = \(\frac{10^{2020}+10}{10^{2020}+1}=\frac{\left(10^{2020}+1\right)+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)

B = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10B = \(\frac{10^{2021}+10}{10^{2021}+1}=\frac{10^{2021}+1+9}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Do \(\frac{9}{10^{2020}+1}>\frac{9}{10^{2021}+1}\)=> \(1+\frac{9}{10^{2020}+1}>1+\frac{9}{10^{2021}+1}\)

=> 10A > 10B

=> A > B

30 tháng 3 2017

giup voi,làm ơn

AH
Akai Haruma
Giáo viên
21 tháng 7 2024

Lời giải:

$a+a^2+a^3+...+a^{2n}=(a+a^2)+(a^3+a^4)+...+(a^{2n-1}+a^{2n})$

$=a(a+1)+a^3(a+1)+....+a^{2n-1}(a+1)$

$=(a+1)(a+a^3+....+a^{2n-1})\vdots a+1$