Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right).\)
\(\ge10.\frac{1}{30}+10.\frac{1}{40}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\) Vậy \(A\ge\frac{7}{12}\)
Lại có:
\(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\right)+\left(\frac{1}{28}+\frac{1}{29}+...\frac{1}{34}\right)+\left(\frac{1}{35}+\frac{1}{36}+...+\frac{1}{40}\right)\le\)
\(\le7.\frac{1}{21}+7.\frac{1}{28}+6.\frac{1}{35}< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}\)
Đăt S = \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)
S có 20 số hạng.Nhóm thành 2 nhóm,mỗi nhóm có 10 số hạng
Ta có: S = \(\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)\)
=> S < \(\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
=> S < \(\frac{10}{20}+\frac{10}{30}\)
=> S < \(\frac{50}{60}=\frac{5}{6}\) (1)
Lại có:S > \(\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
=> S > \(\frac{10}{30}+\frac{10}{40}\)
=> S > \(\frac{70}{120}=\frac{7}{12}\) (2)
Từ (1) và (2) => \(\frac{7}{12}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{5}{6}\) (đpcm)
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
Ta có: \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(có 20 số hạng \(\frac{1}{40}\))\(=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\left(1\right)\)
Ta lại có:\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}<\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(có 20 số hạng \(\frac{1}{20}\))
\(=\frac{20}{20}=1\)
\(\Rightarrow A<1\)
Từ (1) và (2) =>ĐPCM
* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30
=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3 (1)
1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40
=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4 (2)
Từ (1) và (2)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4
=> 1/21 +1/22 +1/23 +...+1/40 >7/12 (*)
* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20
=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2 (3)
1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30
=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3 (4)
Từ (3) và (4)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3
=> 1/21 +1/22 +1/23+...+1/40 <5/6 (**)
Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6 (đpcm)
Bài hơi dài , thông cảm
Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)
\(>\frac{10}{30}=\frac{1}{3}(1)\)
Ta có : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
\(>\frac{10}{40}=\frac{1}{4}(2)\)
Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)
Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(< \frac{10}{20}=\frac{1}{2}(3)\)
Ta lại có : ....
Làm tiếp đi :v