K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)

\(\Leftrightarrow\widehat{C}\simeq32^0\)

hay \(\widehat{B}=58^0\)

11 tháng 6 2017

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

A H 2 = H B . H C

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 6 2019

Tam giác ABC vuông ở A, ta có:

       AH= 25.64 = 1600, suy ra AH = 40 (cm).

\(tgB=\frac{AH}{BH}=\frac{40}{25}=1,6\)

=>     \(\widehat{B}\approx58^0\);  \(\widehat{C}=32^0\).

hình đây nha 

A B C

Ta có : AH^2 = CH . HB
=>AH=40
Ta lại có:tan B = AH / HB=40/25=1.6
=>B = 580
=>C = 320

a: BC=25+64=89cm

AH=căn 25*64=40cm

S ABC=1/2*40*89=1780cm2

AB=căn 25*89=5căn 89cm

AC=căn 64*89=8 căn 89

=>C=13căn 89+89(cm)

b: tan B=AC/AB=8/5

=>góc B=58 độ

=>góc C=32 độ

c:

góc AMH=góc ANH=góc MAN=90 độ nên AMHN là hcn

=>MN=AH=40cm

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=40(cm)

Xét ΔABH vuông tại H có 

\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{40}{25}=\dfrac{8}{5}\)

\(\Leftrightarrow\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

12 tháng 10 2017

Đáp án C

Ta có: BC = HB + HC = 25 + 64 = 89 cm

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)