K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

\(|a|\geq 0\forall a\in\mathbb{R}\) nên \(b^2(b-c)\geq 0\) kéo theo \(b-c\geq 0\leftrightarrow b>c\) (do $b$ và $c$ là hai số khác nhau )

Do đó $b$ chỉ có thể là số dương hoặc $0$

Nếu \(b=0\rightarrow |a|=0\Rightarrow a=0\) hay \(a=b\) (vô lý)

Do đó $b$ chính là số dương.

Nếu \(a=0\Rightarrow b^2(b-c)=0\). Mà \(b>0\) nên \(b-c=0\Leftrightarrow b=c\) (vô lý)

Vậy \(a\) là số âm, $b$ là số dương, $c$ là $0$

29 tháng 3 2016

Vì trong 3 số nguyên a, b, c có 1 số dương, 1 số âm và 1 số bằng 0

Xét đẳng thức |a|=b^2.(b-c) (1)

=>a, b, c là ba số nguyên khác nhau

Nếu a=0 =>|a|=0

=> Đẳng thức (1) trở thành

b^2.( b-c)=0

Mà b khác c do đó b^2=0=>b=0

                                        =>a=b=0(không thỏa mãn a khác b)

Nếu b=0 ta có đẳng thức (1) trở thành

|a|=0.(0-c)

|a|=0(không thỏa mãn vì a khác 0)

Nếu c=0 ta có đẳng thức (1) trở thành

|a|=b^2. b

|a|=b^3

Vì |a|>0 với mọi a khác 0

=>b^3>0

=>b>0(vì 3 là số lẻ)

=>a<0

Vậy a là số nguyên âm, b là số nguyên dương, c là số 0

25 tháng 12 2015

nhanh lên các bạn ơi .ngày kia mình cần rồi .ai làm vừa ý mình mình link cho

18 tháng 12 2015

+ b =0 => a =0 loại 

Nếu b <0 =>/a/ =  b2(b-c) <0 vô lí

Vậy b > 0 ; c =0 ; a <0 sao cho /a/ = b3

5 tháng 6 2015

 Nếu: 
  |a| = b^2 (b - c) = 0

<=> a = 0; => (b - c)= 0 <=> b = c; loại (không phù hợp với đề bài) 
  |a| = b^2 (b - c) > 0

=> a và b # 0 => c = 0;  => b^2 (b) > 0, mà b^2 > 0 nên => b > 0; => a < 0.

19 tháng 3 2018

Xác định trong 3 số a,b,c trong đó phải có số âm, 0, dương: 
-Giả sử a=0 thay vào CT trên ta có: 
\0\=0=b^2(b-c). 
+vì b^2 luôn dương nên (b-c) phải bằng 0 
+Nếu b dương, c âm thì (b-c)>0 không đúng. 
-Giả sử b=0 thay vào CT trên ta có: 
b^2(b-c)=-0^2(0-c)=0=> a=0 Không đúng. 
+Nếu c=0 thì \a\=b^3 
Dấu = xảy ra khi b dương vì \a\ luôn luôn dương. 
Nếu b là số âm vế phải b^3 luôn âm thì dấu bằng không xảy ra vì\a\ luôn dương. 
Vậy ta chỉ xác định được một trường hợp duy nhất: Khi a âm, b dương và c bằng 0

19 tháng 3 2018

Hay ta có thể ;làm cách này

Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt . 
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c 
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí 
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0 
Vô lí vì khi đó a = b = 0 
Vậy c = 0 
ĐK trở thành \a\=b^2.b = b^3 
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối) 
Nên vp = b^3 > = 0 => b > = 0 
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0 
=> a < 0 
Vậy a < 0; b > 0; c = 0.

P/s chắc là đúng nhỉ?