K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Xác định trong 3 số a,b,c trong đó phải có số âm, 0, dương: 
-Giả sử a=0 thay vào CT trên ta có: 
\0\=0=b^2(b-c). 
+vì b^2 luôn dương nên (b-c) phải bằng 0 
+Nếu b dương, c âm thì (b-c)>0 không đúng. 
-Giả sử b=0 thay vào CT trên ta có: 
b^2(b-c)=-0^2(0-c)=0=> a=0 Không đúng. 
+Nếu c=0 thì \a\=b^3 
Dấu = xảy ra khi b dương vì \a\ luôn luôn dương. 
Nếu b là số âm vế phải b^3 luôn âm thì dấu bằng không xảy ra vì\a\ luôn dương. 
Vậy ta chỉ xác định được một trường hợp duy nhất: Khi a âm, b dương và c bằng 0

19 tháng 3 2018

Hay ta có thể ;làm cách này

Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt . 
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c 
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí 
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0 
Vô lí vì khi đó a = b = 0 
Vậy c = 0 
ĐK trở thành \a\=b^2.b = b^3 
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối) 
Nên vp = b^3 > = 0 => b > = 0 
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0 
=> a < 0 
Vậy a < 0; b > 0; c = 0.

P/s chắc là đúng nhỉ?

Bạn à,bạn vào phần câu hỏi tương tự nhé,có bài giống Y hệt bài bạn đấy.

6 tháng 9 2018

nhưng mà mấy câu ấy chưa được trả lời

bạn biết thì giúp mk với

cảm ơn bạn nhiều!

5 tháng 6 2015

 Nếu: 
  |a| = b^2 (b - c) = 0

<=> a = 0; => (b - c)= 0 <=> b = c; loại (không phù hợp với đề bài) 
  |a| = b^2 (b - c) > 0

=> a và b # 0 => c = 0;  => b^2 (b) > 0, mà b^2 > 0 nên => b > 0; => a < 0.

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Lời giải:

\(|a|\geq 0\forall a\in\mathbb{R}\) nên \(b^2(b-c)\geq 0\) kéo theo \(b-c\geq 0\leftrightarrow b>c\) (do $b$ và $c$ là hai số khác nhau )

Do đó $b$ chỉ có thể là số dương hoặc $0$

Nếu \(b=0\rightarrow |a|=0\Rightarrow a=0\) hay \(a=b\) (vô lý)

Do đó $b$ chính là số dương.

Nếu \(a=0\Rightarrow b^2(b-c)=0\). Mà \(b>0\) nên \(b-c=0\Leftrightarrow b=c\) (vô lý)

Vậy \(a\) là số âm, $b$ là số dương, $c$ là $0$

5 tháng 8 2015

giả sử trong ba số a, b, c không số nào là số dương. 

ta có: abc < 0 , mâu thuẫn 

do đó trong ba số a, b, c có ít nhất một số dương

14 tháng 7 2019

Làm vô đây đài nhưng làm trog giấy ngắn lắm

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

1) a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm

Tk mk nha

9 tháng 4 2018

Bài 1:

Vì trong 3 số nguyên a, b, c có 1 số dương, 1 số âm và 1 số = 0

Ta xét đẳng thức:  \(\left|a\right|=b^2.\left(b-c\right)\)(1)

=> a, b, c là số nguyên khác nhau

Nếu a = 0 thì => |a| = 0

=> Đẳng thức (1) trỏ thành: \(b^2.\left(b-c\right)=0\)

Mặt khác: 

Do b khác c nên 

b2 = 0 => b = 0

          => a = b = 0 (ko thỏa mãn đk.)

Nếu b = 0 thì đẳng thức (1) trở thành: 

|a| = 0 . (0 - c) 

|a| = 0 (ko thỏa mãn (a khác b))

Nếu c = 0 thì đẳng thức (1) trở thành:

|a| = b. b

|a| = b3

Do vì |a| > 0 (a khác 0)

=> b3 > 0

=> b > 0 (3 số lẻ)

=> a < 0

=> a là số dương, b là số âm, c là số 0

Bài 2:

\(n^2-3n^2-36< 0\)

\(\Leftrightarrow-2n^2-36< 0\)

\(\Leftrightarrow-2n^2< 36\)

\(\Leftrightarrow n^2>-18\)

\(\Rightarrow n^2-3n^2-36< 0\)với mọi số tự nhiên

9 tháng 4 2018

2/ \(A=\frac{\left(1-x\right)^4}{-x}\)

a) Nếu A là số dương

=> \(\frac{\left(1-x\right)^4}{-x}>0\)

=> \(\hept{\begin{cases}\left(1-x\right)^4>0\\-x>0\end{cases}}\)=> x < 0

Vậy nếu x < 0 thì A > 0

b) Nếu A là số âm

=> \(\frac{\left(1-x\right)^4}{-x}< 0\)

=> \(\orbr{\begin{cases}\left(1-x\right)^4< 0\left(1\right)\\-x< 0\left(2\right)\end{cases}}\)

Mà \(\left(1-x\right)^4\ge0\) với mọi giá trị của x

=> Không xảy ra (1) => -x < 0 => x > 0

Vậy nếu x > 0 thì A < 0.

c) Nếu A = 0

=> \(\frac{\left(1-x\right)^4}{-x}=0\)

=> (1 - x)4 = 0

=> 1 - x = 0

=> x = 1

Vậy nếu x = 1 thì A = 0.

25 tháng 4 2019

Em chung họ nguyển với anh em xin được làm quen với anh NGUYỄN THÀNH NAM

19 tháng 3 2020

câu trả lời chả liên quan gì đến câu hỏi cả=_=