\(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+.....+\dfrac{3}{32\times35}\)
giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =\(\dfrac{4^2}{3\times5}\) \(\times\)\(\dfrac{5^2}{4\times6}\) \(\times\) \(\dfrac{6^2}{5\times7}\) \(\times\) \(\dfrac{7^2}{6\times8}\)
A = \(\dfrac{4\times4\times5^2\times6^2\times7\times7}{3\times4\times5^2\times6^2\times7\times8}\)
A = \(\dfrac{4}{3}\) \(\times\) \(\dfrac{7}{8}\)
A = \(\dfrac{7}{6}\)
a) \(\dfrac{30\times25\times7\times8}{75\times8\times12\times14}=\dfrac{3\times2\times5\times25\times7\times8}{25\times3\times8\times3\times4\times2\times7}=\dfrac{5}{3\times4}=\dfrac{5}{12}\)
b) \(\dfrac{8\times3\times4}{16\times3}=\dfrac{8\times3\times2\times2}{8\times2\times3}=2\)
c) \(\dfrac{4\times5\times6}{3\times10\times8}=\dfrac{4\times5\times3\times2}{3\times5\times2\times4\times2}=\dfrac{1}{2}\)
\(B=\dfrac{40404}{70707}+\dfrac{244\times395-151}{244+395\times243}+\dfrac{1\times3\times5+2\times6\times10+4\times12\times20+7\times21\times35}{1\times5\times7+2\times10\times14+4\times20\times28+7\times35\times49}\\ =\dfrac{4}{7}+\dfrac{243\times395+395-151}{244+395\times243}+\dfrac{1\times3\times5\left(1+2+4+7\right)}{1\times5\times7\left(1+2+4+7\right)}\\ =\dfrac{4}{7}+\dfrac{243\times395+244}{244+395\times243}+\dfrac{3}{7}\\ =\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+1\\ =1+1=2\)
a,
\(\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{6}{5}\)
b, \(\left(-\dfrac{14}{25}\right)^2.\dfrac{125}{49}+\left(-3\dfrac{11}{36}\right).2\dfrac{2}{17}=\dfrac{4}{5}.\left(-7\right)=-\dfrac{28}{5}\)
c, \(\dfrac{1}{3}-2.1=-\dfrac{5}{3}\)
\(\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{32}{40}+\dfrac{48}{56}+\dfrac{14}{21}\\ =\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{4}{5}+\dfrac{6}{7}+\dfrac{2}{3}\\ =\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{7}+\dfrac{6}{7}\right)+\left(\dfrac{1}{5}+\dfrac{4}{5}\right)\\ =1+1+1=3\)
Lời giải:
$\frac{1}{3}+\frac{1}{7}+\frac{1}{5}+\frac{32}{40}+\frac{48}{56}+\frac{14}{21}$
$=\frac{1}{3}+\frac{1}{7}+\frac{1}{5}+\frac{4}{5}+\frac{6}{7}+\frac{2}{3}$
$=(\frac{1}{3}+\frac{2}{3})+(\frac{1}{7}+\frac{6}{7})+(\frac{1}{5}+\frac{4}{5})$
$=\frac{3}{3}+\frac{7}{7}+\frac{5}{5}=1+1+1=3$
Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)
=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)
=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)
=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)
=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)
a)
\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{7}{2}\)
\(=\dfrac{13}{5}+\dfrac{49}{10}\\ =\dfrac{26}{10}+\dfrac{49}{10}\\ =\dfrac{15}{2}\)
b)
\(=\dfrac{52}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)
\(=\dfrac{52}{4}-\dfrac{22}{7}\\ =\dfrac{69}{7}\)
a) $2\dfrac35 + 1\dfrac25 . 3\dfrac12$
$= \dfrac{13}5 + \dfrac75.\dfrac72$
$= \dfrac{26}{10} + \dfrac{49}{10}$
$=\dfrac{15}2$.
b) $4\dfrac34 - 3\dfrac23 : 1\dfrac16$
$= \dfrac{19}4 - \dfrac{11}3 : \dfrac76$
$= \dfrac{19}4 - \dfrac{11}3 . \dfrac67$
$= \dfrac{19}4 - \dfrac{22}7$
$= \dfrac{45}{28}$.
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+....+\dfrac{3}{32\cdot35}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{32}-\dfrac{1}{35}\)
\(=\dfrac{1}{2}-\dfrac{1}{35}\)
\(=\dfrac{33}{70}\)
thank you