CHứng minh rằng \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
Ta có :
Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50
= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)
<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)
=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)
=1/26 + 1/27 +1/28 +...+1/50 (đpcm)
Lời giải:
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)
$\Rightarrow A< \frac{1}{50}$
Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi
2a.
$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)
A = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.....+ \(\dfrac{1}{50^2}\)
A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+......+\(\dfrac{1}{50.50}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
..................
\(\dfrac{1}{50.50}\) < \(\dfrac{1}{49.50}\)
Cộng vế với vế với ta có:
A = \(1+\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+....+ \(\dfrac{1}{50.50}\) < 1 + \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)
A < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+......+ \(\dfrac{1}{49}\)- \(\dfrac{1}{50}\)
A < 2 - \(\dfrac{1}{50}\) < 2 ( đpcm)
Lời giải:
$A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}$
$A< \frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}$
$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}$
Hay $A< \frac{3}{4}$
1.
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
2.
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)
Ta có:
\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)
\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)
\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)
Đặt:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1.2}\\\dfrac{1}{3^2}< \dfrac{1}{2.3}\\\dfrac{1}{4^2}< \dfrac{1}{3.4}\\\dfrac{1}{50^2}< \dfrac{1}{49.50}\end{matrix}\right.\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1-\dfrac{1}{50}\)
\(A< 1\rightarrowđpcm\)
Ta thấy:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{50}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{49}{50}< 1\)
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 1\)